Generic iterators

Dealing with unknown data
structures

Example from last lecture

template<class X>
bool find(InSeq<X>& s, X x)

while (s.availQ)) {
if (s.next() == x)
return true;

return false;

¢ Where does this class rely on its
argument being derived from InSeq?

The example generalized

¢ Instead of requiring an InSeq, we can

use any class with the right properties

template<class S, class X>
bool find(S& s, X x)

while (s.availQ)) {
if (s.next() == x)
return true;

return false;

}

Implications

* When we write a template function with
a general type parameter, we can call it
with an argument that has any type
with the appropriate properties

¢ The compiler checks those properties
during template instantiation, before
the program runs

* No overhead at execution time

More implications

* When we design a template function,
we can start by thinking about how we
would like to be able to use the
arguments

+ Afterwards, we can see if there is an
available type that does what we want

¢ If not, we can create one or revise our
template function definition

An example

¢ We defined f1ind to work with any
class that has avail () and next()
members

¢ Another approach might be to define
find to work with built-in arrays, or
types, such as pointers, that act in
conjunction with built-in arrays




Making f1ind work with built-
in arrays

template <class T>
bool find(T* tp, int n, const T& x)

while (n > 0) {
if (tp++ == X)
return true;
--n;
}
return false;

}
e Where do we assume tp is a pointer?

Generalizing find to other
types

template <class P, class T>
bool find(P p, int n, const T& t)

while (n > 0) {
if (Fp++ == ©)
return true;
--n;
}

return false;

What's going on here?

¢ Saying that p has type P (where Pis a
template parameter) says little about p

¢ Our particular version of find requires
us to be able to evaluate *p++ and
compare the result to t

¢ The requirements on P are implicit, and
come out only during instantiation

How might we make this
f1ind more useful?

¢ We should not have to know the
number of elements in advance
—we might be searching in a file ...
— ... orina linked list or similar structure

« Instead of returning true or false, it
should tell us where the value was
found, or return failure somehow

Defining ranges without
counting

e We need a way to represent a
sequence even if we don’t know how
big it is when we start

¢ A pair of pointers turns out easiest

¢ Following long-standing C conventions,
we use a pointers to
— the first element of the sequence
— one past the last element of the sequence

Advantages of off-the-end
pointers

¢ They make it much easier to represent
and detect an empty sequence

— Otherwise, the end pointer might be less
than the begin pointer

— If there are no elements, we'll surely need
a pointer that doesn't point to an element

¢ They provide a convenient error return
¢ They let us use == to test for the end




Why is == important?

* When we use an order relation (<, <=,
>, >=) to check for the end of a
sequence, we are making an
unnecessary assumption

¢ For example, the elements of a linked
list do not necessarily occupy ordered
memory locations

The next revision of find

template<class P, class T>
P find(P begin, P end, const T& t)
{

while (begin !'= end & *begin != t)
++begin;
return begin;

o If you try it with symmetric bounds,
you'll see what’s wrong with them

¢ This version of find is part of the
standard C++ library

Assumptions about type P

* Well behaved with regard to copying
e Prefix ++ and * defined
¢ Binary != defined

We can fill out the
assumptions

o If we are going to assume prefix ++, we
should probably assume postfix ++ also

¢ Ditto for !'=and ==

o It also makes sense to assume that
p->mem means the same as (*p) .mem

¢ The standard library calls any type for

which these assumptions hold an /nput
fterator

Why no null iterators?

¢ Suppose we want to use find on a
singly linked list
— Define a class that contains a pointer
— Define ++ on that class to move the
pointer to the next list element
¢ A null iterator would then be the logical
way to mark the end of a list

e Why not return null on failure?

The answer is subtle

¢ Suppose we have an algorithm
—whose input is a begin—end pair
—whose output is either in the [begin, end]
range (including one past the end) or null
¢ There’s trouble if null can end a list,
because we can‘t tell null from end+1
o If null can’t end a list, it restricts our
data structures




Another reason to return end

¢ If find returns end on failure, that
tells us where to insert a new element
in the sequence

¢ Similar arguments turn out to work well
for other algorithms too

Input iterator requirements

o If
- p is well behaved when we copy and
assign it, and
- *p, p==q, p'=q, ++p, and p++ are all
sensibly defined, and
- p->mem means (¥*p) .mem

e Then we call p an input iterator

Output iterator requirements

¢ Like input iterator requirements, except
that
—we need not be able to read the value of
*p
—we must be able to evaluate *p = g
— each distinct value of p must have *p
assigned to exactly once

Using input and output
iterators

template<class In, class Out>
Out copy(In begin, In end, Out out)

while (begin != end)
*out++ = *begin++;
return out;
}
¢ This function is part of the C++

standard library

A copy example

char msgl[] “Hello 7;

char msg2[] = “world”;

char message[100];

char* p = copy(msgl,
msgl + sizeof(msgl)-1,
message);

copy(msg2, msg2 + sizeof(msg2), p);

cout << message << endl;

Why is this abstraction useful?

e It is not much harder to implement than
the avail/next abstraction

¢ Built-in pointers meet the requirements
as long as you use them to point to
contiguous memory
— algorithms work smoothly on built-in arrays
—code is about as efficient as it can be




Other categories of iterators

¢ Forward iterators combine the
properties of input and output iterators

—you don't have to assign through each
iterator exactly once

—you can come back to a place later
« Bidirectional iterators also handle --

+ Random-access iterators also allow
arithmetic with integers, relational ops

Using bidirectional iterators

template<class T>
void reverse(T begin, T end)

while (begin !'= end) {
--end;
if (begin != end) {
swap(*begin, *end);
++begin;

A more compact version

template<class T>
void reverse(T begin, T end)

while (begin != end)
if (begin != --end)
swap(*begin++, *end);

}
¢ This is another standard library function

The swap function

template<class T>
void swap(T& x, T& y)

{
T temp = x;
X =Y;
y = temp;

}

Using random-access iterators

template<class T, class X>
bool binary_search(T begin, T end, const X& x)

while (begin <= end) {
T mid = begin + (end-begin)/2;
if (x == *mid)
return true;
if (x < *mid)
end = mid;
else
begin = mid + 1;
}
return false;

}

Iterator category summary

¢ Input iterators can represent input files

¢ Qutput iterators can represent output
files

¢ Forward iterators can represent singly
linked lists

« Bidirectional iterators can represent
doubly linked lists

¢ Random-access iterators can represent
arrays




How the library uses these
abstractions

¢ Every library data structure has a
corresponding iterator type

¢ Most algorithms work on iterators,
rather than directly on data structures

e Library containers have begin() and
end () members that yield iterators

Discussion

¢ Suppose we have a function to sum the
elements of a container

¢ In the inner loop of that function, the
container will always be the same type

¢ Therefore, if we can push the decision
about the type out of the loop, we will
decide once instead of many times

« Ideally, we would like to avoid deciding
during execution time altogether

Example

o If we define a function that takes an
InSeq<T>& argument, each use of that
argument requires a type decision
(because InSeq uses virtual functions
each time it accesses the corresponding
data structure)

o If we make it take a T directly, the
decision can be at compile time

Should type decisions be at
compile time?

e When they can be, because of
— faster programs
—errors that you see instead of your users
¢ But it requires planning
- heterogeneous containers
— objects and communication
¢ Such problems are hard, and language
sensitive

Generic applications

¢ Imagine an abstraction for the
operations you care about in
— a database system
— a window system

¢ Then (in principle) you could write an
application as a template (or local
equivalent) that takes a database and a
window system as parameters

Summary

¢ Programs don't always need to know
the exact types they use
— they might know the types’ properties
— they might know specific operations on

those types

¢ Some languages let you fix the types
during compilation, some during
execution




Shorter summary

Sometimes it helps if you don't know
too much about what you're doing

Projects

e Each team will be expected to
demonstrate its project
— be prepared to answer design and process

related questions

¢ Each team has to find appropriate
computing facilities for the
demonstration and schedule a mutually
agreeable time

¢ All demonstrations during exam week

Project dates

¢ 4 slots/day

—-10:30 - 11:30
- 1:30 - 2:30
- 3:00 - 4:00

- 4:30 - 5:30 (%
¢ Reviews will be held Monday -
Thursday, 5/17 - 5/20

Project scheduling

e Email us 3 choices by 4/15

¢ Final schedule will be distributed in
class on 4/21




