Generic programming

How to write programs that dont
quite know what they're doing

Overview

¢ The traditional view of algorithms and
data structures ties them closely
together

¢ It doesn't have to be that way
— especially not for simple algorithms...
—which turn out to be useful in surprisingly

many contexts

¢ These ideas take different forms in

different languages

The fundamental idea

 Instead of designing algorithms to deal
with specific data structures, we can
design them in terms of abstractions of
data structures

By fitting an appropriate abstraction to
each of several data structures, we can
make the same algorithm work with
several different data structures

What is an abstraction of a
data structure?

¢ A set of operations that are
—common to several data structures
— useful for several algorithms

* A way of thinking about data structures
in general that does not rely on any
specific data structure

¢ Fundamental example: the idea of a
sequence

Abstracting a sequence

* What sequence operations are
fundamental?
—examine each element in tum
—generate a sequence
¢ Other operations are less fundamental
—search for a particular element
—reverse the elements
— sort them, etc.

What kinds of sequences are
there?

¢ Arrays

o Lists

« Files are particularly interesting
— elements might not all be available
—reading is potentially destructive
—when you write is important

* What else can you dream up?




Input and output differ

o If we are going to treat files as
sequences, the distinction is essential
¢ Many algorithms also make the
distinction
— copying reads the input, writes the output

- searching just reads, although whatever
requested the search might write later

—reversing a sequence reads and writes

A sample algorithm

e Search a sequence for a particular value
— start with the first element

— keep looking until the element is found or
the sequence is exhausted

— stop as soon as you find what you wanted
¢ How might we find an abstraction of

sequences that will let us implement
this algorithm?

What doesn’t work

e We can't assume that all sequences will
support the same operations

¢ Therefore, we cannot rely solely on
operations defined along with the
sequences themselves

¢ Our abstractions will have to be defined
separately

Strategy (classical approach)

¢ Invent an interface that does what we
want

¢ Declare a base class that captures that
interface

¢ Derive a class for each data structure
we care about

A concrete example

¢ To keep it simple, assume we are
reading (not writing) sequences of
integers

+ What are the key operations?

— Determine whether there are any elements
left in the sequence

— Fetch the next element in the sequence

An abstract base class

class InSeq {

pubTic:
virtual bool avail(Q) =
virtual int next() = 0
virtual ~InSeq(Q) { }

0;
}

¢ We assume that each call to next will
be preceded by a call to avail




How might we use it?

bool find(InSeq& s, int x)

{
while (s.availQ)) {
if (s.next() == x)
return true;
}
return false;
}

Using InSeq

¢ Suppose we have an integer array
called a, with n elements
¢ How do we determine whether a
contains a value equal to x?
— Derive a class from InSeq that lets us use
an array as a sequence

— Call find with an appropriate object of
that derived class

Deriving from InSeq

class IntArraySeq: public InSeq {
pubTic:
IntArraySeq(const int*, int);
virtual bool avail(Q);
virtual int next();
private:
int n;
const int¥* p;

};

IntArraySeq member
definitions

IntArraySeq: :IntArraySeq
(const int* p0, int n0):

p(p0), n(n0) { }

bool IntArraySeq::avail(Q

{
return n > 0;
}
int IntArraySeq: :next()
{
--n; return *p++;
}

Using IntArraySeq to search
an array

int a[100];
IntArraySeq s(a, 100);
if (find(s, 42)) {
// a contains the value 42

}

Why does it work?

¢ Class InSeq has defined a general
interface

¢ Class IntArraySeq has specialized
that interface for arrays

¢ Each time find calls s.avail () or
s.next (), that is a virtual call that
executes the corresponding
IntArraySeq operation




Advantages of this approach

* We have to define only one abstract
interface for each overall strategy for
accessing sequences

» We can define another derived class
from InSeq for each kind of sequence
we care about

¢ Each derived class is potentially useful
to many algorithms

Disadvantages of this
approach

e Each callto avail() or next() isa
virtual call, with associated overhead

¢ Using an IntArraySeq destroys it

e We would like to be able to copy
IntArraySeq objects

— We should be able to save an
IntArraySeq before we destroy it

— After we find a particular value, we would
like to be able to remember where it was

¢ We don't want to deal just with integers

Overcoming the
disadvantages

¢ The difficulty in copying is peculiar to
C++

¢ The overhead it not, but some
languages just live with it

¢ C++ can solve both problems by using
templates, which allow compile-time
polymorphism

Templates: overall idea

 Instead of having a single type InSeq

to represent integer input sequences
only, we define a family of types:
template <class T> class InSeq {
pubTic:

virtual bool avail() = 0;

virtual T next() = 0;

virtual ~InSeq() { }
}

Two kinds of templates

¢ Class templates: We must supply type
arguments every time we use a class
template

¢ Function templates: We generally do
not supply type arguments because
they are inferred from the function
arguments

A simple class template

template<class T> class Vector {
pubTic:

Vector(int n0): n(n0), pCnew T[n0])

{3
~Vector() { delete [] p; }
T& operator[](int k)
{ return p[k]l; }

private:

int n;

T* p;
}




A simple function template

template<class T>
T sum(Vector<T>& v, int n)

{
T result = 0;
for (int i = 0; i < n; ++i)
result += v[n];
return result;
}

Using these templates

Vector<double> v(100);

for(int i = 0; i < 100; ++i)
v[il =1 * 1;

double s = sum(v, 100);

We could define find this
way...

bool find(InSeq<int>& s, int x)

{
while (s.availQ)) {
if (s.next() == x)
return true;
}
return false;
}

But it's more useful to define
it this way:

template<class X>
bool find(InSeq<X>& s, X x)

while (s.availQ)) {
if (s.next() == x)
return true;
}

return false;

We now declare ArraySeq as a
generalization...

template<class T>
class ArraySeq: public InSeq<T> {
pubTic:
ArraySeq(const T¥, int);
virtual bool avail(Q);
virtual T next();

private:
int n;
const T* p;
};

... and define it this way:

template<class T> ArraySeq<T>::ArraySeq
(const T* p0, int n0):
p(p0), n(n0) {1}
template<class T>
bool ArraySeq<T>::valid(Q {
return n > 0;
}

template<class T> T ArraySeq<T>::next()
{

}

--n; return *p++;




Now we can use f1ind almost
as before:

int a[100];
ArraySeq<int> s(a, 100);
if (find(s, 42)) {

// a contains the value 42

}

Where are we now?

* We can define an ArraySeq class for
an array of objects of any type

¢ We can derive other classes from
InSeq for other containers

¢ But we still have the virtual-function
overhead for each call

¢ Moreover, it’s still unclear what the
right InSeq interface is

What is an InSeq, really?

¢ A separate object that grants access to
a data structure

¢ An InSeq captures the idea of stepping
through an (unknown) data structure

¢ We can therefore call InSeq (and
similar classes) Jterators

¢ The next lecture will look at other forms
of iterators

Homework (due Monday)

¢ Derive another class from InSeq that
reads input from a file, rather than from
an array

¢ Use that class to compute the sum of a
sequence of floating-point values read
from the standard input

¢ It's OK to use an object-oriented
language other than C++ if you like




