Inheritance

Capturing similarities between
types

Overview

e This lecture and the next one will
describe object-oriented programming

¢ Most of the ideas described here are
useful in more than one language

¢ Specific examples, as usual, are in C++

Philosophical note

¢ Abstraction is selective ignorance
¢ How do you decide what to ignore?
¢ One way is to note similarities and
differences among several things
- Sometimes, you want to concentrate on
the similarities
— Other times, you want to ignore the
similarities and look only at the differences

Inheritance

¢ Inheritance is a way of describing a
class by saying how it differs from
another class

e Example: “Class Y is just like class X
except for the following additions...”
—Class Y is called a derived class or subclass
—Class X is called a base class or superclass

Why use inheritance?

¢ The usual reason is when you have two
types where one is necessarily an
extension of the other

¢ Sometimes (but not all the time) you
are going to want to ignore the
differences and look only at the base
class (which is what they have in
common)

The classic example

¢ Consider a system that can manipulate
various kinds of shapes

¢ Sometimes you don't care what
particular kind of shape you have
(example: move to a different location)

¢ Sometimes you do care (example: draw
the shape on a display)

Specifying inheritance in C++

class Shape {

pubTic:
Point position;
/o
};
class Circle: public Shape {
pubTic:
int radius;
/o
};

What it means

e When we say
class Circle: public Shape { /* .. */ };
we are saying that
—ACircleis akind of Shape
— Therefore, in addition to its own members,

class Circle inherits all the members of
class Shape, and

—The fact that a Circle is a kind of Shape
is publicly available

When to use inheritance

* When you want to be able to say “Every
Y is really a kind of X with some extra
properties”

* When you really want Y to be able to
do everything X can do

¢ This state of affairs leads to...

The Liskov substitution
principle

o If a class Y is “just like” a class X except
for extensions, then it should be
possible to use a Y object anywhere
you can use an X object

¢ You should design your classes to
preserve that property unless you have
a strong reason to do otherwise

Examples

¢ An aircraft is a kind of vehicle

¢ An airplane is a kind of aircraft
¢ S0 is a helicopter

¢ A square is a kind of shape

¢ S0 is a triangle

¢ S0 is a generalized polygon

¢ Is a square a kind of polygon?

Is a square a (kind of)
polygon?

¢ The answer depends on whether we
can follow the Liskov principle:
— Suppose we have a program that uses
polygon objects

—The Liskov principle says that we should be
able to rewrite the program using square
objects instead

— Can we do that?

Squares and polygons

e Whether a (class that represents a)
square is a kind of a (class that
represents a) polygon depends on what
properties of polygons we're capturing
—If a polygon object contains a list of sides,
the answer is probably no

- If a polygon object contains just a position,
and implies that there are no curves, the
answer might be yes

Other examples

¢ A circle is not a kind of ellipse, nor is an
ellipse a kind of circle

¢ A square is not a kind of rectangle, nor
is a rectangle a kind of square

e But an immutable square might be a
kind of rectangle, and an immutable
circle a kind of ellipse

Implementation

Shape object Circle object

position position

radius

Access to base class

¢ Derived-class members can access
protected and pub1ic members of
corresponding base-class objects

¢ Pointer (or reference) to derived can be
converted to pointer (or reference) to
pub1ic base (or, within member
function body, to protected base)

Inheritance of members

¢ Every pub1ic member of the base
class is a member of the derived class
Circle c;

/7

Point p = c.position;

Classes are scopes

+ A member of a derived class hides all
base-class members with that name

class X {
public: void f(int);
b

class Y: public X {
public: void f(char); // hidesX::f

Y;
£(123456); // calls Y::f(char)
X

}
Y
y.
y.X::f(123456); // calls :f(int)

Conversion examples

Shape s;

Circle c;

Shape* sp = &c; // OK
Circle* cp = &s; // Ill-formed
Shape& sl = c; // OK
Circle& cl = s; // Ill-formed
s = C; // OK
C=5; // Ill-formed

Why allow s = ¢?

¢ Class Shape implicitly has a
Shape: :Shape(const Shape&)
copy constructor and an analogous
assignment operator

e We can bind a const Shape&
parameter to (the Shape part of) a
Circle object

¢ Only the Shape part is actually copied

A tiny vector class

class Vector {
pubTic:
Vector(int n): data(new int[n]) { }
~Vector() { delete[] data; }
int& operator[](int n) {
return datal[n];

}

private:
int* data;

};

A vector class with explicit
bounds

class BVec: public Vector {
pubTic:
BVec(int begin, int end):
b(begin), Vector(end-begin) { }
int& operator[](int n) {
return Vector::operator[](n-b);

}

private:
int b;
};

Treating a BVec as a Vector

// Sum the first n Vector elements
int sum(Vector& v, int n)

{
int r = 0;
for (int i = 0; i < n; ++i)
r += v[il;
return r;
}

BVec b(10, 40);
int s = sum(b, 20); // [10, 30)

Why does this example work?

¢ A BVec is a kind of Vector

e Calling sum(b, 20) binds v to the
Vector part of b

e When sum is running, it doesn't care
whether it's working on a Vector, a
BVec, or an object of some other class
derived from Vector.

This example is ...

¢ Unusual: Usually, derived-class
operations will not hide base-class
operations

¢ Incomplete: The classes should have
copy constructors and assignment
operators

o Slightly naughty: It does not follow the
Liskov substitution principle

Where is the violation?

e Remember: A derived class object
should be able to substitute for a base
class object without changing the
behavior of the program
— A Circle should do everything a plain

Shape can do (but not vice versa)
— A Bvec should do everything a plain
Vector should do (but not vice versa)

» But we can't create, say, Bvec(10),

or, necessarily, use b[0]

Does operator[] violate the
principle?

¢ The definitions are definitely different in
the base and derived classes

* However, they do the same thing when
the lower bound is zero

¢ A Vector has a lower bound of zero
¢ S0 there is no problem here

+ Note: A base class does not have to
substitute for a derived class

Cleaning up Bvec

¢ The operator[] member doesn't
violate the Liskov principle

¢ Therefore, all we really have to do is
give Bvec a second constructor, with
no arguments

Examples of inheritance

¢ In chess, a capture is a kind of move

e A while statement is a kind of
statement

e A manager is a kind of employee

¢ A directory is a kind of file (though we
may want to think about whether this
notion follows the Liskov principle)

Examples where inheritance is
inappropriate

¢ An automobile is not a kind of engine

¢ An integer array might be a kind of
array, but it is not a kind of integer

Squares and polygons

¢ A square might seem at first to be a
kind of polygon, but
— a polygon can have any number of sides
— a square is restricted to having four sides

¢ A polygon might seem to be able to do

everything a square can do, but

— a square has one number (the length of a
side) that makes no sense for a polygon

— a polygon is not substitutable for a square

Other non-inheritance
situations

¢ Squares and rectangles
e Circles and ellipses
« Strings and file names

— Not every valid string is a valid file name
— Therefore, file names cannot be
substituted for strings

— But file names support operations that
strings do not

Review

¢ Inheritance lets us use a base class to

describe properties that are common to
several classes

e We can convert a pointer (reference) to
a class object into a pointer (reference)
to a sub-object whose type is a public
base class of the object’s class

What's next

¢ Suppose we have a pointer to a base
class object:
Shape* sp = /* some expression*/;
¢ How do we know whether that pointer
actually points to a Shape or, say, to a
Circle? Why might we care?

Homework (due Monday)

¢ Take a program that uses inheritance
and dynamic binding and translate it so
that it doesn't rely on the corresponding
language features (In other words,
pretend you're a compiler)

¢ You're not going to have all the

information you need until Wednesday,
but you might want to think about it

