Performance: theory and
practice

General observations

¢ Performance usually matters
— Small improvements are less important
— Sometimes, huge differences are possible
¢ Measuring performance accurately is
hard

¢ S0 is predicting it without measuring it

Why does performance
matter?

¢ Bad algorithms don't scale
- If a bad (quadratic) sort algorithm takes 1
millisecond to sort 100 items, it will take
» 0.1 seconds to sort 1,000 items
» more than a day to sort 1,000,000 items
» nearly 4 months to sort 10,000,000 items

o Competition
—If a reviewer lists products in performance
order, a little better is as good as a lot

When doesn’t performance
matter?

e When it's good enough
—you're running the program only once
— it doesn't take long whatever you do
—it's not the bottleneck

¢ When something else matters more
— development time
— correctness
—some other part of the system

What does “performance”
mean?

¢ Usually two components
— fixed overhead
—related to size of input
¢ Usually two dimensions
- Time
— Space
¢ You can often trade one for the other

How do we characterize
performance?

¢ Usually, we express execution
properties (time, space, etc) in terms of
properties of the input (length, etc.)

¢ Relative measurements are often more
useful than absolute ones

* We might give either average or worst
case, possibly amortized

¢ Many degrees of rigor are possible

Asymptotic representations

* We often want to know approximately
“how good (bad) it is” even if we don't
(and can't) know exactly
— Machines and compilers differ
— We may wish to disregard fixed overhead...
—...or constant multiples

¢ One way to get the right amount of
imprecision is the O(f(n)) notation

The O(f(n)) notation

¢ Introduced by Paul Bachmann in 1892

¢ Loosely speaking, O(f(n)) means
“asymptotically no larger than a suitable
multiple of f(n),” where n>0

¢ More precisely, “g(n)=0(f(n))"” means
that there are constants K and N such
that |g(n)| <= K|f(n)| whenever n>=N.

Examples of O-notation

e 42 = O(1)
¢ 3n + 42=0(n)
e 5n2—3n + 7 =0(n?
e 12+ 22+ . +n2=n33+n%2 +n/6
= O(n3)
e Loosely: Pick the fastest growing
term and discard constant multiples

Related notations

¢ O-notation refers only to upper bounds

¢ To express a similar lower bound, we
use Q (omega) instead of O

o If a function is simultaneously an upper
and lower bound, we use O (theta), so
that saying that g(n) = O(f(n)) says
that g(n) gets arbitrarily close to a
multiple of f(n) when n is large enough

The importance of these
notations

o It usually doesn't matter how a
program performs on small inputs

¢ For large inputs, these notations show
what dominates performance

¢ Practical calibration, for input size n:
O(1): Ideal, but usually impossible
O(n): Usually the best possible, often unattainable
O(n log n): Almost as good as O(n)
0O(n?): OK in toy programs but not for serious purposes
O(n?): Hopeless even for toy programs

Sometimes algorithms vary

¢ Algorithms sometimes perform poorly

— Quicksort is usually O(n log n) but can be
0O(n?) if the input is unfortunate

— Self-adjusting data structures may pause
from time to time to adjust themselves

¢ We might therefore talk about
— Worst-case performance
— Average performance
— Amortized performance

What are we measuring?
(harder than it sounds)

e Theory

— Do we assume that adding two integers
takes constant time?

— Even if they are of unbounded precision?
¢ Practice

— How do we account for system
interference?

— What about caching?

Real computers have bounded
memory

¢ On a machine with unbounded memory
—integers would need unbounded precision
—m+n would take O(log(|m|+|n|)) time
- claiming O(n) would be problematic

¢ Once we fix a word size, we can treat
addition as taking O(1) time

¢ Therefore, distinguishing between O(n)
and O(n log n) can be tricky

A concrete example

¢ Assume that we have a string package
in which concatenating two strings
takes O(length(result)) time.
¢ How long does the following loop take?
s = “ ’
while (--n >= 0)
S =S + X;

Analyzing the loop

Each iteration

o(1
s = “u./ ()/iSO(]_)

while (--n >= 0)

_ . Each iteration is
S =s+X ’F\O(Iength(x) - iter#)
(= O(iter#))
O(length(x) - (1 + 2 +... + n))
=0(1+2+..+n)

= o(n?)

File-system directories have
similar problems

¢ Typically linear search, for reasons of
- reliability
—laziness

¢ Inserting an entry into a directory with
n entries takes O(n) time

¢ Creating a directory with n entries takes
O(n2) time (Ouch!)

Fast string duplication

¢ Preallocate memory for the result
s = "7
s.reserve(x.length() * n);
while (--n >= 0)
S += X;

¢ Advantage: O(n) time instead of O(n?)

¢ Disadvantage: requires cooperation
with string class

Another approach

string dupl(string x, unsigned n)

string r; // null by default
if (n) {
r = dupl(x, n/2);
r +=r;
if (n % 2)
r += X;
}

return r;

Measuring performance in
practice

o Computers are faster than stopwatches

¢ Sources of interference:
— operating systems
— caches and other buffers
— optimizers
— hardware oddities
—-bugs
¢ Accurate measurement is hard!

A measurement example

¢ How long do subroutine calls take?
void churn(int n) {
if (n > 0)
churn(n-1);
}
¢ Timings for n=0...9: 0.2, 0.4, 0.7, 0.9,
1.1, 1.3, 4.2, 7.0, 10.0, 12.8

¢ With optimization, it is nicely linear!

What is going on here?

¢ This particular machine has a stack
cache in the processor chip

¢ When recursively nested calls get too
deep, the code must flush the cache

* When optimization is turned on, the

compiler turns the recursion into
iteration

Another example: memory
allocation

« Ideally, allocating a block of memory
should take O(1)

¢ If n blocks are already allocated in
memory, many implementations take
O(n) to allocate one more (worst case)

e Allocating n blocks therefore takes
O(n?) in the worst case

Another timing example

* Here is a program fragment
int x[100000];
for (int i = 0; i < 100000; ++i)
x[i] = 1;
» What does it cost to replace
int x[100000];
by

vector<int> x(100000);

Expected a factor of 2; got nearly 5
because of default "debug mode”
(in “production mode,” all was as expected)

Benchmark detectors

o Compiler vendors care about reported
performance

¢ Reviewers tend to use widely known
benchmarks

¢ Therefore, some compilers check
whether they are running a known
benchmark, and cheat if they are!

Other hazards

e Memory fragmentation may inflate
space usage

¢ Garbage collection may introduce
unpredictable delays

¢ A virtual-memory operating system may
interact with timing in weird ways

¢ Other programs running at the same
time may affect measurements

Distributed applications

¢ Networks are usually much slower than
programs
— Can the network handle the traffic?
— Even when it's heavily loaded?

¢ Partitioning your program can be critical

Advice

¢ Think about overall performance as
early as possible, especially to avoid
O(n?) or worse in space or time

¢ Don't worry too much about detailed
performance until you can measure it

¢ Expect the measurements to be
surprising

¢ Good performance is hard to obtain

Homework (due March 22)

e What is the asymptotic performance of
the dup1 program? Prove it.

¢ Experiment with the computer you
normally use to find an aspect of its
performance that could be dramatically
improved. Use malloc or file-system
performance only as a last resort.

Notes on the midterm

¢ In class, during normal class time
¢ Format: Choose 4 out of 6 questions
¢ Based on material in lecture notes

¢ You will be expected to

- be able to understand C++ programs
similar to those presented in class, but

—not to be able to write them flawlessly

