Handles and use counts

Making objects act like values

Overview

¢ Suppose we have a class whose objects
we do not wish to copy
- strings
— arrays and other containers

e How can we avoid copying such objects
except when truly necessary?

¢ One way: Copy something else instead

What is a copy?

¢ A copy of an object is a distinct object
with the same properties as the original
o If the object is part of a large data
structure, we might distinguish between
— copying just that object (shallow copy)
— copying the whole structure (deep copy)

Why do we want to copy
objects?

¢ How do you tell whether two names

refer to the same object?

— Modify one object

— Observe the change in the other
¢ Making a copy of an object

— usually precedes a change to one of the

objects
—is unnecessary otherwise

Recall our String class

class String {
friend ostream& operator<<
(ostream&, const String&);
pubTic:
String();
String(const char¥*);
String(const String&);
String& operator=(const String&);
~StringQ);
private:
char* data;
void init(const char¥);
void destroy(Q);

Strings are treated
as values

e Copying a String copies the
characters that constitute it

¢ Freeing the String frees its
characters




An example of how Strings
work

String s = “Hello”;
String s2 = s;

s2
s L]
L]
HeT1o\O
HeT1o\O

Copy and assignment...

String::String(const String& s)
init(s.data);

String&
String: :operator=(const String& s)
if (this = &s) {
destroy();
init(s.data);

return *this;

...result in new data
being allocated

void String::init(const char* s)

Often these allocations
are unnecessary

String f(String s)
{

{
data = new char[strlen(s) + 1]; String Xx;
strcpy(data, s);
} e
return x;
}
makes an extra copy of s and
perhaps of x as well.
Handles The implementation class

e How can we avoid copying such objects
except when truly necessary?

¢ One way: copy something else instead
e Each String will be a handle class

e class String and its implementation
class will cooperate to manage the data
and avoid unnecessary copies

» Will hold the data pointer and an int
that will count how many Strings
point to that object

e When Strings are copied, we'll
increment the use count

e When they are destroyed will
decrement the use count

e When the last String is destroyed
we'll free the characters




The revised data structure

String s = “Hello”;
String s2 = s;

String_rep class

class String_rep {
char* data;
int use;
friend class String;

};

Revised String class

class String {
friend ostream& operator<<
(ostream&, const String&);
String_rep* r;
pubTic:
StringQ;
String(const char¥*);
String(const String&);
String& operator=(const String&);
~String(Q);

The String_rep operations

class String_rep {
friend class String;
friend ostream& operator<<
(ostream&, const String&);

String_repCunsigned n):

data(new char[n]), use(1l) { }
~String_rep(Q

{ delete [] data; }

char* data;
int use;

The String constructors

¢ Allocate a new String_rep
¢ Copy the characters

String::String(Q: r(new String_rep(1))
{

r->data[0] = ‘\O’;
String::String(char *p):

r(new String_rep(strlen(p) + 1)) {
strcpy(r->data, p);

Copy Constructor

e Just copies the String_rep pointer
and fiddles the use count

String::String(const String&s): r(s.r)
{

}

++r->use;




The destructor

¢ Checks whether it is the last String,
and if so, frees the String_rep

String: :~String()
{
if (--r->use == 0)
delete r;

Assignment

¢ As usual, assignment must guard
against self-assignment

¢ Assignment itself, involves copying the
String_rep pointer and fiddling use
counts

¢ The data array itself is not copied

Assignment operator

String&
String: :operator=(const String& s)
{

++S.r->use;

if (--r->use == 0)

delete r;
r=s.r;
return *this;

Output

* We have to change the output operator
to account for the indirection through r

ostream&
operator<<(ostream& o, const String& s)

0 << s.r->data;
return o;

Operations on String

¢ So far, we can only create and assign
Strings

¢ Some operations will involve copying
the underlying data, others won't

¢ For example concatenation

Compound concatenation

o Like the assignment operator, it
changes the left-hand-side

¢ Thus, we'll need to allocate a new
String_rep




Operator+=

String&
String: :operator+=(const String& s)

if (s.r->data[0] !'= ‘\0’) {
String_rep* newr =
new String_rep(strilen(r->data) +
strlen(s.r->data) + 1);
strcpy(newr->data, r->data);
strcat(newr->data, s.r->data);
if (--r->use == 0)
delete r;
r = newr;

return *this;

Binary concatenation

¢ Should be a non-member function
+= modifies its LHS
+ does not

* We'd like to allow conversions

String world = “world”;
String hello = “hello”;
String out;

out = “hello ” + world;
out = hello + ™ world”;

Concatenation

String
operator+(const String & lhs, const String& rhs)

String ret = |hs;
ret += rhs;
return ret;

b

Conclusions

e We can use constructors and
destructors to define classes whose
objects behave much like values

e We can use use-counted memory
allocation to avoid having to copy data
needlessly

¢ These techniques are fundamental to
C++ programming

Smalltalk does it differently

¢ In Smalltalk, copying is always explicit
—all types are objects
—all variables are references
—after x—y, x and y always refer to the

same object

¢ Therefore, the language deliberately
prohibits changing the value of objects
of types such as int and string

Java does it differently, too

¢ Simple types, such as int, are values,
not objects
— Each variable of one of these types has its
own copy
— Therefore, operations such as ++ present
no problem
» Strings are objects, so changing part of
a string presents a problem, so Java
prohibits it




ML has a systematic approach

¢ All values are just that—values—and
therefore cannot be changed once
created

e For every value type T, there is a
corresponding object type T ref,
values of which type behave similarly to
variables in Smalltalk or Java

The root of the problem

¢ Most programmers think of some types
as being values and others as objects

¢ Languages that come close to treating
everything as an object have trouble
dealing with values

o C++, which treats almost everything as
a value, requires extra awareness to
deal with objects

Dealing with objects in C++

¢ A pointer is a value that is bound to a
particular object

¢ A reference isn't even a value: It's just
a name that is bound to an object

« Virtual functions work only through
such bindings

» We can define classes that also act like
bindings and are useful in other ways

Properties of binding objects

¢ Attach one to another object

o Access (modify?) the object to which it
is attached

¢ Copy the binding object (which might
copy the other object or not)

¢ Destroy the binding object (which might
destroy the other object or not)

Binding objects have many
forms and names

¢ Pointers

o References

¢ Smart pointers
¢ Handles

¢ Surrogates

¢ Iterators

Reminder: Proposals are
due Friday

¢ The names of the team members
¢ A description of the project

e What will it “cost” (schedule)

* How will you build it (organization)

o What will it build on? (/e. libraries and
other tools)

e Why did you choose this project?




Project Description Presentations

e What it will do ¢ A sales pitch for the project

* What else it will do if you have time » 10 minutes per presentation (so that

e Why it is interesting every team gets a chance)

» What is challenging about it e It's OK if one team member speaks for
the team

¢ Written handouts and overhead slides
(no more than 5) are encouraged




