Controlling copies of objects

Copying an object is not always
the same as copying its contents

The issue

¢ A C++ class defines the meaning of
every operation performed on objects
of that class.

¢ If you don't define certain operations,
the compiler does it for you:
— Ordinarily, copying a class object means
copying its elements
— That behavior is often inappropriate for
classes that represent abstract data types

Objects versus values

¢ What is the difference?
e Why does it matter?
¢ How do we model the difference?

o Warning: These concepts are somewhat
vague and approximate, and not
everyone agrees on what they mean

Values

¢ Once created (computed), they are
never modified

¢ No way to tell the difference between a
value and a copy of it

¢ Typically called rvaluesin C and C++

Objects

o Referred to by Wvaluesin C and C++

¢ Once created, they can be modified

¢ A copy of an object is distinct from the
original
— Modifying one does not modify the other

—Their addresses are different (whatever
that means in a given language)

¢ Objects usually contain values

Examples

e 3 is a value
¢ If we define a variable, as in
int x = 3;
that variable is an object, which
contains the value 3




Variables are objects

» We can demonstrate that distinct
variables are distinct objects by
changing one of them and observing
that the other does not change

¢ Even if the variables are const, we can

still observe that they have different
addresses

Pointers are values

¢ A copy of a pointer is indistinguishable
from the original, even though pointers
identify (/.e. contain the addresses of)
objects

¢ Variables that contain pointers are
objects, as usual

Arrays are (essentially)
objects

¢ In C and C++, the name of an array is
usually converted to the address of its
initial element, which is distinct for
distinct arrays

¢ By implication, string literals (such as
“abc’) are objects, not values,
because they are arrays

A concrete example

+ We will define a class String whose
objects represent variable-length strings
of characters

* We would like String objects to
behave much like values

¢ In particular, we would like to be able

to pass Strings as arguments, return
them as results, etc.

One implementation snag

¢ A string literal, as built into the C and
C++ languages, is an object, but it
evaluates to a pointer, which is a value

¢ That means that “copying” a string
literal copies the pointer, which results

in two pointers that identify the same
object

Literals and aliasing

¢ Suppose we say
char* x = new char[4];
strcpy(x, “cat’);
char* y = x;
x[2] = ‘r’;
Then x and y refer to the same object,
so changing x[2] changes y[2] also
¢ This behavior makes it hard to treat
strings as values




Strings as values

+ What we would like is an abstraction
that lets us use strings as if they were
values:

— Copying a string should copy the
characters that constitute it

— Freeing a string should free its characters
¢ To define such an abstraction, we need
to be able to define copying

What is copying?

« Copying an object creates a copy of it

¢ Therefore, copying is a way of
constructing a new object

¢ Accordingly, we say how to copy
objects of a particular class by writing a
copy constructor for that class

What is a copy constructor?

¢ Suppose we have an object of class X
and we want to construct another
object of class X from it

¢ Then we need a constructor that takes
an object of class X as argument

Overloading constructors

¢ The copy constructor had better not be
the only way to construct an object,
because if it were, there would be no
way to create the first object

¢ Therefore, classes that have a copy
constructor will invariably have more
than one constructor

First try

¢ It might seem that we could define a

copy constructor this way:
class X {
pubTic:
X(X); // copy constructor?
/]
}

* However, this strategy fails hideously

Why X(X) doesn't work

¢ Recall that passing an argument to a
function copies the argument

¢ Therefore, calling X(X) must copy the
object being copied before it can copy it
—To do that, it would have to use the copy
constructor, but calling the copy
constructor must first copy the argument

» To do that, it would have to use the copy
constructor, but ...




What do we really want

¢ To copy an object, we want to run a
copy constructor whose parameter is
bound to that object without copying it

¢ Moreover, we do not want to modify
the original object in order to copy it

¢ Therefore, we want the copy
constructor to take a reference to
const as its parameter

Writing a copy constructor

class String {

pubTic:
/]
String(const String&);
/]

}

String::String(const String&)
{7% %%

What operations should a
String support?

¢ Create a String from a null-
terminated character array

¢ Destroy a String
e Copy a String
e Print a String

We can start coding

Class String {
friend ostream& operator<<
(ostream&, const String&);
pubTic:
StringQ; // empty string
String(const char¥*);
String(const String&);

private:
char* data;

};

Default constructor

¢ Necessary in order to allow
String s;
or
String s[10];

* We will allocate a null string:
String::String(): data(new char[1])
{

datal[0] = “\0’;

Construct a String from a
character array

String::String(const char¥* s):
data(new char[strlen(s) + 1])
{
strcpy(data, s);




The copy constructor

String::String(const String& s):

The rest of it

String: :~String()

data(new char[strlen(s.data)+1]) {
{ delete[] data;
strcpy(data, s.data); }
ostream& operator<<
(ostream& o, const String& s)
{
0 << s.data;
return o;
}
Example Two problems

int main(Q) {
String hello(“Hello );
String world(“world”);
cout << hello;
cout << world << endl;

¢ Sometimes we will copy strings when
we'd rather not; this problem affects
performance but not correctness

o We still haven't defined the meaning of

String sl1, s2;
sl = s2; // What does this do?

Assignment is not copying

¢ It might appear that
sl = s2;
makes s1 into a copy of s2, but that
reasoning is deceptive

e The reason is that sl already had a
value, and we must first dispose of it
somehow

¢ Also, how do we specify assignment?

Defining assignment

o C++ treats assignment as a separate
operation from copying

¢ Assignment is a member function with
the strange name of operator=

o It should return a reference to the left-
hand side, for consistency with built-in
assignment




Example of assignment

class String {

pubTic:
//
String& operator=(const String&);
/o

};

Assignment usually has three
parts

¢ Check whether the left-hand and right-
hand sides are the same object
—This is not just for efficiency; we must
avoid deleting the object’s contents and
then trying to assign them!
¢ Do the assignment (often like executing
the destructor and copy constructor)

¢ Return the left-hand side

Referring to the present
object

¢ Within the body of a member function,
the keyword this is a pointer to the
object that is currently in use

¢ Therefore, the expression *this is a
reference to the present object
¢ Assignment operators will therefore
usually say
return *this;

Putting it all together

String&
String: :operator=(const String& s)

if (this 1= &s) {
delete[] data;
data = new char[strlen(s.data)+1];
strcpy(data, s.data);

return *this;

}

Regrouping modules

¢ There are four interface operations
— Construct from a character array
— Construct from a(nother) String
— Assign
— Destroy
e ...but only two in implementation
— Copy in a character array
— Destroy

Implementation subroutines

e We can't call constructors explicitly, and
shouldn‘t call destructors, but we can
regroup their work into auxiliary
functions
—Copy in a string with init
— Delete our data with destroy

¢ The other operations will call these




Revise the class

class String {

friend ostream& operator<<
(ostream&, const String&);
pubTic:
String();
String(const char¥*);
String(const String&);
String& operator=(const String&);
~StringQ);
private:
char* data;
void init(const char¥*);
void destroy();

Now we can initialize and
destroy once
void String::init(const char* s)
{
data = new char[strlen(s) + 1];

strcpy(data, s);
}

void String: :destroy()

delete[] data;

The other operations become
easier

String::String(Q

More operations

String::String(const String& s)

{ {
init () init(s.data);
} }
String::String(const char* s) String: :~String()
{ {
init(s); destroy();
} }
Assignment Where are we now?
String&

String: :operator=(const String& s)

if (this !'= &s) {
destroy();
init(s.data);
}

return *this;

o We know how to define the meaning of
copying and assignment for classes

» We used that tool to define a class that
behaves like a variable-length string




The next couple of weeks

¢ Proposals due this Friday
— see notes from lecture 2 for details

—no homework this week so you can focus
on the presentations

¢ Presentations in class next week
¢ Midterm Wednesday, March 10




