A completely different look at
abstraction

Rewriting the line-breaking
program in ML

The purpose of this lecture

e Examine an ML version of the line-
breaking program

— ML is a mostly-functional language that is
dramatically different from C++

— The program is therefore going to be very
different as well
¢ Understand how the same abstractions
can work in very different languages

What is ML?

e ML stands for “MetaLanguage”

e Originally part of a theorem-proving
system, but outgrew its beginnings

e Started about the same time as BCPL
(the precursor to C), literally next door

e Presently the work of an informal
collaboration between Bell Labs and
several universities (including Princeton)

Properties of ML

¢ Mostly functional
— Functions are first-class values
— Mutable objects legal, but discouraged
« High level, semantically safe
— All memory is garbage collected
— All operations are checked for validity
« Strongly typed, with compile-time type
inference

The point of this program

e We are going to try to implement
abstractions in ML that are similar to
the ones we used in C++

o If we were setting out from scratch to
write this program in ML, we would
have used different abstractions

» We will leave many details of ML
unexplained

Meta-points

e Abstractions can mostly transcend any
one language ...

e ... but total language independence is
hard ...

e ... and independence from language
and environment is even harder




Design strategy

e The program you are about to see is an
ML implementation of a design that was
originally intended for C++

o If we were setting out to write this
program from scratch in ML, we would
probably design it differently

» We intend to stick with our original
C++ abstractions to the extent possible

Defining the abstractions

e ML has what is called a signature, which
is a formal way of expressing an
interface to a family of types and
functions

* We will define a signature that
corresponds to each of our Token and
Line classes

o After that, we will implement them

The TOKEN signature

signature TOKEN =
sig
datatype Toktype =
WORD of string | BREAK | END
val construct: TextIO.instream -> Toktype
end

The value of construct is a function
whose argument is @ TextIO.instream
and whose result is a Toktype

A Toktype value is either a WORD (in which
case it contains a string), or a BREAK or an END
(in which case it contains no additional data).

The LINE signature

signature LINE =
sig
type T;
val construct: int -> T
val reset: T -> T
val canfit: T * string -> bool
val append: T * string -> T
val print: T * TextIO.outstream -> unit
end

 Note that we haven't said anything
about what the type T is yet: That's
part of the implementation.

Implementing a signature

¢ We will implement the Token signature
by writing
structure token : TOKEN =
struct
(* definitions will go here *)
end

e Every name that matches the signature
will be type-checked against it

e Every name that doesn't will be hidden

Defining Token. Toktype

datatype Toktype = WORD of string | BREAK | END
e This definition must match the one in

the signature

— We defined the details of Toktype in the
signature because it is part of the interface

— We have to define it again in the structure
because we define everything in the structure; the
compiler verifies the definitions but doesn't invent
them




Checking for white space

e ML doesn't have a built-in isspace
function, so we must write our own

fun isspace(#" ") = true
| isspace(#"\n") = true
| isspace(#"\t") = true
| isspace(.) = false

e Writing #%c” in ML is analogous to
writing ‘c’ in C or C++

Using | in definitions

e The usual way of defining functions in
ML is to give a number of alternatives,
where the first ones are often constants

¢ The alternatives are tested in order

e These tests, and recursion, are the

main control structures:

fun fact(0) =1
| fact(n) = n * fact(n-1)

Counting newlines

e QOur first job in constructing a Token
will be to read white space, counting
newlines, to see if we have a paragraph
break

¢ As in C++, we must avoid reading too
far

e ML uses a slightly different abstraction

Reading ahead

e The ML I/O library doesn't let you put
characters back in the input

e Instead, it lets you peek ahead in the
input to see what the next character is
(and whether you're at end of file)

The countnl function

fun countnl(strm, cnt) =
case TextIO.lookahead(strm) of
NONE => cnt
| SOME(c) =>
if isspace(c)
then (TextIO.inputl(strm);
countnl(strm, if ¢ = #"\n”

then cnt+l
else cnt))

else cnt

¢ We will pass an initial value for the
counter as a parameter when we call it

The readword function

« This function assumes that the very
next character in the input is nonblank

fun readword(strm) =
case TextIO.lookahead(strm) of
NONE => ™"
| SOME(c) =>
if isspace(c)
then "™
else (TextIO.inputl(strm);
Char. toString(c)Areadword(strm))




The construct function

¢ There’s nothing special about this
function in ML, but we've given it a
name that suggests its purpose

fun construct(strm) =
if countnl(strm, Q) >= 2
then BREAK
else if TextIO.lookahead(strm) = NONE
then END
else WORD(readword(strm))

The Line structure

¢ You'll be happy to know that the
functions in this one are simpler

e The outline:
structure Line : LINE =
struct
(* definitions go here *)
end

The type Line.T

e As in C++, we will use a string and
an int to represent a line

e ML gives us a way to define simple
structures as ordered pairs (or triples,
etc.) without having to make up names
type T = string * int

construct, reset, and
append

¢ Note that these functions take a Line
as input and yield a new Line as
output (with the same maximum width)
fun construct(n) = (""", n)
fun reset(s, n) = ("", n)
fun append((s, n), s’) =
(ifs=""
then s’
else s A" " AST
n)

canfitand print

fun canfit((s, n), s’) =

ifs=""

then size(s’) <=n

else size(s) + size(s’) + 1 <=n
fun print((s, n), strm) =

ifs=""

then O

else TextIO.output(strm, s A "\n")

Now for the reformat
function

¢ We want to avoid using a mutable
variable

¢ As with the countnl function, we will
do so by passing the value of the
variable as an argument in a recursive
call

o We will therefore make reformat call
an auxiliary function




The top-level definition of
reformat

fun reformat(istrm, ostrm, n) =
let fun (1) = (* definition of £ *)
in f(Line.construct(n))
end

The definition of f

fun £(1) =
case Token.construct(istrm) of
Token.BREAK =>

(Line.print(1, ostrm);
TextIO0.output(ostrm, "\n");
f(Line.reset(1)))

| Token.WORD(wW) =>
if Line.canfit(1, w)
then f(Line.append(1, w))
else (Line.print(1, ostrm);

f(Line.append(Line.reset(1), w)))

| Token.END =>

Line.print(1, ostrm)

How do we execute it?

e For example:

reformat(TextIO.openIn(“myfile”),
TextIO.stdOut, 60)

So what’s the point?

* Most of the design translated right into
ML, even though the languages are so
different

e Although the design translated easily,
the implementation did not

e Moreover, one seemingly small
difference made a large difference in
the program

The biggest little difference

¢ C and C++ share the notion of reading
an extra character from the input and
putting it back if you decided you didn't
like it

e ML lets you peek ahead one character
without reading it

Why was this difference
important?

e If you can't put back a character after
reading it, you must save it somewhere
that will let the rest of your program
getatit

« In the ML version, that would require
passing “the next character” from each
function to the next

¢ So we had to use lookahead instead




Another systematic difference

¢ Although ML does allow mutable values,
using them in a program such as this
one would go against the spirit of ML

e Instead, we introduced extra arguments
to countnl and reformat so that we
could pass the state explicitly from one
iteration to the next

What about I/O?

¢ Input and output are the only side
effects in this program

¢ We could have rewritten the program to
avoid side effects altogether, but it
would have looked much different

¢ Changing the shape of your foundation
often changes what you build on it

The moral of the story

e A clean, abstract design can transcend
any one language

¢ However, it is hard to avoid depending
on the environment altogether

e Sometimes a small change in the
environment can mean a large change
in the program




