Programming with abstract
data types

Where are we now?

e We have a preliminary design for a line-
breaking program

¢ That program uses line and token
abstractions, which we must implement

e We willdo itin C++

What do we need?

¢ A Token class to represent strings or
line breaks

¢ A Line class to represent a growing
line of text

¢ A program to reformat lines of text
¢ Glue to hold everything together

Defining C++ classes

* We define the class itself:

class FM access labels
public:

// interface
private:

// implementation
¢ We then define the functions that
constitute the implementation

The Token class

constructor
class Token {

pu blic: ~member functions
Token(istream*) ;«—
Toktype type() const;
string word() constf}ﬁ
private:

// Saying const here is
} . a promise that calling this
’ function will not change the
value of the object

How will we implement it?

¢ Every token knows what type it is

« If a token represents a word, it will
contain a string

¢ This strategy is somewhat simplistic, so
we will revisit it later




Representing the kind of
token

e Enumerated types are a convenient way
of using names instead of magic
numbers

enum Toktype {
WORD, BREAK, END
};

Finishing the definition

class Token {
public:
Token(istream*);
Toktype type() const;
string word() const;
private:
string s;
Toktype t;

Defining the member

functions
Toktype Token::type() const
{
return t;
}
string Token::word() const
{
assert(type() == WORD);
return s;
}

Now comes the (first) hard
part

¢ Reading a Token from an input stream
requires us to know how input works
- get () will return a character or EOF
-eof () will tell us if a previous call to get
returned EOF
- putback(c) will let us push a single
character back into the input; we must not
try to push EOF
¢ These functions are all members of
istream

Token constructor, part 1

Token: :Token(istream* 1)
{
if (i->eof())
t = END;
else {
// We have work to do
}

What are the possibilities?

o White-space characters that include two
or more newlines (we return BREAK)

¢ Zero or more white-space characters
including at most one newline, then

— a non-space character (we must read
characters and return WORD), or

—end of file (we must return END)
¢ In all cases, we will read one extra char




Our first task

e Read as many white-space characters
as we can, remembering the first
character (or EOF) afterwards, and
counting newlines

* We will rely on the isspace function
(from the standard library) to tell if a
character is white space

Scanning white-space
characters

This type must be int,
not char, so that we can
hold any character and

int ¢ = 'i_>get(); still have room for EOF

int nl = 0;
while (disspace(c)) {
if (c == "\n’)
++n1;

c = i->get();

Where are we now?

* We have just read something that is not
white space; it could be
—the first character of a word, or
- EOF

 If we have seen >=2 newlines (i.e., if
n1>=2), we want to defer (push back)
whatever comes next

Dealing with what we scanned

if (nl1 >= 2) {

t = BREAK;

if (c !'= EOF)

i->putback(c);

} else if (c == EOF)

t = END;
else {

// still more work to do

}

Reading a word: strategy

* We know we have a word because we
did not find a paragraph break and we
have read a non-space character

¢ We must accumulate characters until
we find white space or EOF

+ We will have read one character too far,
so we must put it back

Reading a word: code

t = WORD;
do {
s += char(c);
c = i->get();
} while (c !'= EOF &&
!isspace(c));
if (c !'= EOF)
i->putback(c);




A note on putback

¢ Every alternative ended with a call to
putback except the case where we
have read EOF

¢ We can therefore merge the calls to
putback into one, after checking that
we are not trying to put back EOF.

The reduced code

if (n1 >= 2)
t = BREAK;
else if (c == EOF)
t = END;
else {
t = WORD;
do {
s += char(c);
c = i->get();
} while (c !'= EOF && !isspace(c));

if (¢ = EOF)
i->putback(c);

The Line class

class Line {
pubTic:
Line(int);
void reset();
bool canfit(string) const;
void append(string);
void print(ostream*) const;

private:
string w;
int max;
};

The L1ine constructor

constructor initializer

nothing else to do

The reset function

void Line::reset()

{
}

TR

W = ,

The canfit function

bool Line::canfit(string s) const
{
if (w.empty())
return s.length() <= max;
return (
w.length() + s.length() + 1
) <= max;




The append and print
functions

void Line::append(string s)

{
if (lw.empty())
w+= “7;
W += S;
}
void Line::print(ostream* o) const
{
if (lw.empty())
*0 << W << endl;
}

Putting it all together

void reformat(istream* in, ostream* out, int width) {
Line 1(width); Token t(in);

while (t.type() != END) {

if (t.type() == BREAK) {
T.print(out); 1.reset();
*out << endl;

} else {
if (M.canfit(t.word())) {

T.print(out); l.reset();

}

1.append(t.word());
}
t = Token(in);

1.print(out);

And finally, the main
program...

int main(Q)

{
reformat(&cin, &cout, 60);
return 0;

Dependencies

e The I/O library
¢ The string class
e The isspace library function

Putting it all together

¢ The easiest way:
— An #include for each library facility
- For each class:
» the class definition
» the member function definitions
— Functions that are not part of any class
— Finally, the main function

¢ Ideally, we should use multiple files

Thoughts on the program

e We could improve the program...

o ...but it is reasonably abstract, and
reasonably straightforward

e We introduced the notion of an END

token during implementation, not
during design




Language dependencies

¢ Abstraction is rarely impossible in any
language
— It may require discipline on the part of
users
—There may be a price in convenience or
efficiency
¢ In particular, we can implement this
solution using C instead of C++

Objects

¢ This program used objects of Line and
Token types to contain the state of the
program

o We often think of an operation such as
append as “acting on” an object

¢ Such actions are a fundamental part of
object-oriented programming

Are objects necessary?

No!/

¢ To understand this claim better, let’s
review what objects are, and how they
differ from abstract data types in
general

What is an object?

o It contains information
¢ There are operations defined on it
o It has identity

—Two different objects can contain identical
information, and support identical
operations, but still be different objects

What is object identity?

e Suppose x and y are names of objects.

¢ How can we tell if x and y are merely
two different names for the same
object?
— Perhaps we can take the address of x and
of y

— Perhaps we can change one of them and
see if the change is reflected in the other

Identity and mutable state

¢ Unless you have a way of checking the
identity of an object directly (such as its
address), the only way to determine if
two objects are the same is to change
one and see if the other changes

¢ Therefore immutable objects have no
identity.

o Immutable objects are just values!




Functional programming

¢ There is a school of thought that says
that mutable objects are evil, and all
computation should be done with pure
values
—usually called functional programming
—major languages: ML, Haskell
— very impressive results in the laboratory
- limited commercial relevance so far

The key issues

¢ Functional and object-oriented
programming are styles of abstraction
that address similar problems
— How do we partition a program?

— What information flows between the parts
of the program?

—What do authors of one part have to know
about other parts?

¢ They come to very different conclusions

Summary

¢ We have seen an object-oriented
implementation of the line-breaking
problem.

¢ Other languages offer different tools for
abstraction
— Every language offers something
— No language offers everything

¢ To use a language effectively, you must
match its tools to the problem at hand

Homework (due Monday)

¢ Start with an implementation of the
line-filling program. You can use ours
or write your own
— Note: Our version needs egcs or g++ 2.8

¢ Modify it to put its output in multiple
columns, and to make all output lines
(except for the last line of a paragraph)
exactly the same length by expanding
spaces (approximately) equally




