Design variations and data
abstraction

A problem

* Write a program that reads text and
“fills” the lines to make them roughly
the same length.

¢ Assume that a line with no text on it
begins a new paragraph.

Example

e Input:
As I was going down the stair,
I saw a man who wasn’t there.

He wasn’t there again today;
he must be from the CIA.

e Qutput:
As I was going down the stair, I saw
a man who wasn’t there.

He wasn’t there again today; he must
be from the CIA.

How do we approach such a
problem?

¢ Understand the problem thoroughly
¢ Design a solution

¢ Implement the solution (often the
easiest part!)

¢ Figure out why what you did wasnt
what you really wanted

¢ Repeat until satisfied or out of time

Understanding the problem

¢ Qutput lines should be roughly the
same length

o Input is divided into paragraphs; output
must also be divided into paragraphs
that correspond to the input

e What else is there to know?
— How long is “roughly the same length?”

— Does that knowledge define the entire
relationship between input and output?

How long is a line?

¢ Two possible strategies:
—When we exceed a given length, start a
new line at the end of the current word
- If the current word will not fit within the
given length, start a new line first
e Each approach has advantages and
disadvantages




How does input relate to
output?

¢ Every input character appears in the
output, except possibly for white-space
characters (spaces, new-lines, etc.)

¢ White space must be rearranged so that
output lines are the right length

¢ Rearrangement might replace spaces by
new-lines and vice versa, or might add
or delete white space

What we don't know

¢ How do the white-space characters in
the output correspond to those in the
input?
— Several different correspondences are
possible
— Even if we pick one correspondence, there
is no guarantee that it is the right one

¢ A good solution will allow alternatives

Sample questions with open
answers

« If an input line begins with spaces,
should the output line do so as well?

— Even after the beginning of a paragraph?
—What if it begins with too many spaces?

o If two words have more than one space
between them, should the output
preserve those spaces?

— What if the output line breaks there?
— What if there are too many spaces to fit?

Two possible viewpoints

 All the characters in each line are
significant. We want to rearrange those
lines, changing as little as we can, to
meet the length requirements.

¢ Each line consists of words with space
between them. We want to keep the
words, but we can change the spaces.

¢ How do we choose a viewpoint?

Two approaches to design

¢ Preserve as much flexibility as possible
—When you find you did the wrong thing, it
will be easy to change
—The program is likely to be complicated
¢ Look for the simplest definitions

- If they're wrong, it will be easier to find
what's right

— A simple program costs less to throw away

Problems should reflect
purposes

¢ One way to decide what problem to
solve is to ask “"How will we use the
solution?”
— Reformatting email messages
— Preparing text to be printed

¢ Does the usage say anything about
what we want the program to do?
—Yes: We want to limit the line length




When in doubt, start with
simple definitions

¢ They are easier to work with

¢ Maybe they will be good enough

¢ It is easier to make them more
complicated later than to simplify them

e For this program, we must define
—words
— paragraphs
— (output) lines

Simple definitions for this
example

e Every input character is either
significant or insignificant.

e A word is a maximal sequence of one or
more significant characters.

e A paragraph breakis a maximal
sequence of insignificant characters that
includes two or more new-line
characters.

Defining the problem

+ We can now view the input as a
sequence of words intermixed with
paragraph breaks

¢ The characters between two adjacent
words are interesting only if they are a
paragraph break

o We can define a foken as either a word
or a paragraph break

Sketching the solution
(find the bugs!)

n=0 /*chars written on current line */
while (we can read a token)
if (the token is a paragraph break) {
start a new output paragraph

else {
Ilw = length(word
if (n+lw > max/)
start anew fing,n =20

}
write the word: n += lw

What bugs are there?

¢ The computation n+=1w gives the
wrong answer

— Redefine the computation to account for
spaces between words

* We never finish the last paragraph
— Flush the output at the end

Design bugs

o If the input begins or ends with a
paragraph break, so will the output
—This may be a bug in something, but it's

not clear that it is a bug in the program
— Nevertheless, we failed to think about it in
our definitions

* We never break a word in the middle,
even if the word is huge




Where did the bugs come
from?

o We wrote “lw+=length(word)” without
thinking about whether that was what
we really wanted

o We started writing programs to write
paragraphs without thinking first about
what paragraphs are

¢ In both cases, we rushed into
implementation too fast

What can we do differently?

* Be more careful about what we want
before we think about fow to get it.
- If we want to limit the length of a line, we
should prove it's possible first
- If we append a word to a line, don't
assume that we will use += to keep track

of the line length; that's an implementation
detail

OK, what do we want?

¢ The key notions seem to be
— Will this word fit on the current line?
— Append a word to the line
—Print a line
— Set the line to blank
o If T is a line, we will use notation like

1.append(w) to append word w to
line 1

We have squirmed away from
the design bug

¢ Saying that “we will start a new line if
the word we are about to print doesn’t
fit on the current line” says nothing
about whether the word will fit on the
new line!

o If a single word is longer than the line
limit, the only alternative is to find ways
of breaking words

The not(tat)ion of objects

¢ The expression 1.append(w) is typical
of object-oriented languages
¢ The key ideas:
—We are going to operate on object 1
—The operation is called append
—The operation takes an argument, which in
this case is w

¢ Calling 1.append(w) might change 1

What is an object?

o It has gperations defined on it

¢ It has state, which is typically accessible
only through operations, rather than
directly

o It has identity, in the sense that two
objects with equal state are still two
different objects




With these notions, we can
rewrite...

T.reset();
while (we can read a token) {
if (token is a paragraph break) {
T.print(); 1.reset(Q);
} else {
word = token;
if (!1.canfit(word)) {
T.print(); 1.reset(Q);

}
1.append(word);

}
T1.printQ;

Where are we now?

* We have defined two concepts, /ineand
token, that are

— abstract enough to be independent of any
particular programming language and
implementation

— concrete enough that we can write and discuss
programs that use them

* We still have an implementation job
ahead of us

Abstract data types

¢ Qur lines and tokens are examples of
abstract data types
— Their users know them by their properties
—The implementation details are hidden

¢ Some languages have direct support for
data abstraction

¢ Other languages make you work at it

Typical support for data
abstraction

¢ An abstract data type is
— a data structure
— a collection of operations

¢ The implementations of the operations
are allowed to know about the data
structure

¢ The user cannot get at the data
structure directly

C++ terminology

¢ The part of a C++ program that
describes an abstract data type is called
a class definition

¢ The type itself is called a c/ass

o Objects are instances (variables and
values) of that class in a program

Homework Mechanics

¢ Any language, any computer

¢ Assignments are usually due on Monday

¢ Late assignments will not be accepted
unless there is a very good reason

¢ Hand in assignments on paper,
preferably stapled

» Please save the assignments after you
get them back




What to hand in

¢ Source code (with comments)
e Input, if any
e Qutput

What is in a proposal

¢ The names of the team members
¢ A description of the project

e What will it “cost” (schedule)

* How will you build it (organization)

o What will it build on? (/e. libraries and
other tools)

e Why did you choose this project?

Project Description

e What it will do

* What else it will do if you have time
e Why it is interesting

e What is challenging about it

Presentations

¢ A sales pitch for the project

¢ 10 minutes per presentation (so that
every team gets a chance)

¢ It's OK if one team member speaks for
the team

o Written handouts and overhead slides
(no more than 5) are encouraged




