

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Compilation Pipeline Page 218

November 24, 1997

Compilation Pipeline

•

Compiler, e.g.,

 lcc

translates from high-level language to assembly language
consumes

 .c

files, produces

 .s

files
some compilers produce object code directly

•

Assembler, e.g.,

 as

translates from assembly language to machine language or object code
consumes

 .s

files, produces

 .o

files

•

Archiver, e.g.,

 ar

collects objects files into a single library
consumes

 .o

files, produces a

 .a

file

•

Linker/loader, e.g.,

 ld

links together object files and libraries into a single executable file or object file
consumes

 .o

files, produces a

 .o

file or an

 a.out

file

•

Execution

loads executable file into memory, starts the program

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembly Languages Page 219

November 24, 1997

Assembly Languages

•

Assembly language is a

symbolic

 representation of

virtual machine

instructions

•

Assemblers

translate

 assembly language into

object code

•

Object code contains the machine language instructions

object files contain information needed to link, load, and execute the program

•

Assembly language statements

imperative

 statements specify instructions; “pure” assemblers map 1 imperative
statement to 1 machine instruction

some assemblers provide

synthetic instructions

, which are mapped to several
machine instructions depending on context, e.g., the SPARC assembler

declarative

 statements specify “assembly-time” services, e.g., reserve space, define
symbols, specify “segments” and scope (local vs. global), initialize data

declarative statements do

not

 yield machine instructions; they add “information” to the
object file that is used by the linker

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembly Languages, cont’d Page 220

November 24, 1997

Assembly Languages, cont’d

•

Most important function of an assembler is

symbol manipulation

e.g., create labels and determine their addresses

•

“forward-reference” problems

loop: cmp i,n .seg "text"
bge done; nop set count,%l0
... ...
inc i .seg "data"
ba loop; nop count: .long 0

done:

“value” of

 done

is unknown address of

 count

is unknown
when

 bge

is assembled when

 set

is assembled

•

Most assemblers have

two passes

pass 1: symbol definition
pass 2: instruction assembly
“pass” usually means reading the file, although it may also store/read a temporary file

•

Other considerations, such as branch displacements, also may require
two passes

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembly Languages, cont’d Page 221

November 24, 1997

Assembly Languages, cont’d

•

Pass 1 constructs a symbol table with entries with name, type, value,
attributes, etc., e.g., mapping of labels to values

•

Pass 2 uses the symbol table to assemble and output instructions

•

Opcodes may be a part of the symbol table or be a separate table;
details depend on opcode structure and assembly language syntax

•

Both passes maintain

location counters

 that are used to determine the
values of labels; a location counter is incremented by instruction lengths
or data sizes

•

High-level assembler structure

<assembler>

<initialize symbol table>

pass1(

symbol table

)
pass2(

symbol table

)

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler: Pass 1 Page 222

November 24, 1997

Assembler: Pass 1

•

pass1

builds the symbol table

void pass1(

symbol table

) {
unsigned lc = 0;

while (

not EOF

) {

read a line
save line in the temp file for pass 2

if (

line contains a label

)
enter(

symbol table, label,

lc)
if (

line contains a directive

) {
if (

pass 1 directive

)

process directive

} else
lc += length(

instruction

)
}

}

might change

 lc

might involve inspecting
instruction, operands, etc.

e.g., use

Table_get

and

Table_put

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler: Pass 2 Page 223

November 24, 1997

Assembler: Pass 2

•

pass 2 reads the symbols built in pass 1

void pass2(

symbol table

) {
unsigned lc = 0;

while (

not EOF

) {

read a line from the temp file

if (

line contains a directive

) {
if (

pass 2 directive

)

process directive

} else {

assemble and output instruction using definitions in symbol table

lc += length(

instruction

);
}

}
}

might change

 lc

may change some symbol
table entries, e.g., use

Table_get

emit output

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler Features Page 224

November 24, 1997

Assembler Features

•

Multiple location counters

: programmer/compiler divides program into
several

logical segments

 using assembler directives, and each segment
has its own location counter

.seg "text" .seg "text"

A A

.seg "data"

C
B

.seg "data"
.seg "text"

B
C D

.seg "data"

D

multiple location counters affects

both

 passes; may appear in object files

•

Multiple location counters may be simply logical segments to facilitate
program organization or may be motivated by machine architecture

text segments are typically loaded into

read-only

 memory and

shared

 by other
processes

data are loaded into

read/write

 memory,

one copy

 per process

assembler may
concatenate
segments on
output

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler Features, cont’d Page 225

November 24, 1997

Assembler Features, cont’d

•

Macros

parameterized abbreviations for often-repeated instruction sequences

conditional assembly

no macros in UNIX assemblers; use the C preprocessor or

 m4

•

One-pass assemblers

assemble instructions in first pass

build a “fix-up table” for those instructions associated with undefined symbols

as symbols are defined, fix the instructions given in the table and remove them from the
table

good for

in-memory

 assemblers

