November 24, 1997

Compilation Pipeline

Compiler, e.g., I cc

translates from high-level language to assembly language
consumes . c files, produces . s files
some compilers produce object code directly

Assembler, e.g., as

translates from assembly language to machine language or object code
consumes . s files, produces . o files

Archiver, e.g., ar

collects objects files into a single library
consumes . 0 files, producesa . a file

Linker/loader, e.g., I d

links together object files and libraries into a single executable file or object file
consumes . o files, produces a . o file oran a. out file

e Execution

loads executable file into memory, starts the program

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Compilation Pipeline Page 218

November 24, 1997

Assembly Languages

Assembly language is a symbolic representation of virtual machine
Instructions

Assemblers translate assembly language into object code

Object code contains the machine language instructions

object files contain information needed to link, load, and execute the program

Assembly language statements

Imperative statements specify instructions; “pure” assemblers map 1 imperative
statement to 1 machine instruction

some assemblers provide synthetic instructions, which are mapped to several
machine instructions depending on context, e.g., the SPARC assembler

declarative statements specify “assembly-time” services, e.g., reserve space, define
symbols, specify “segments” and scope (local vs. global), initialize data

declarative statements do not yield machine instructions; they add “information” to the
object file that is used by the linker

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembly Languages Page 219

November 24, 1997

Assembly Languages, cont’'d

* Most important function of an assembler iS symbol manipulation

e.g., create labels and determine their addresses

* “forward-reference” problems

| oop: cnp i,n . seg "text"
bge done; nop set count, %O
I NnC | . Seg "dat a"
ba | oop; nop count : .long O
done:
“value” of done is unknown address of count is unknown
when bge is assembled when set is assembled

e Most assemblers have two passes

pass 1: symbol definition
pass 2: instruction assembly
“pass” usually means reading the file, although it may also store/read a temporary file

* Other considerations, such as branch displacements, also may require
two passes

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembly Languages, cont'd Page 220

November 24, 1997

Assembly Languages, cont’'d

e Pass 1 constructs a symbol table with entries with name, type, value,
attributes, etc., e.g., mapping of labels to values

e Pass 2 uses the symbol table to assemble and output instructions

 Opcodes may be a part of the symbol table or be a separate table;
details depend on opcode structure and assembly language syntax

* Both passes maintain location counters that are used to determine the
values of labels; a location counter is incremented by instruction lengths
or data sizes

* High-level assembler structure

<assembler> =
<initialize symbol table>
pass1(symbol table)
pass2(symbol table)

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembly Languages, cont'd Page 221

November 24, 1997

Assembler: Pass 1

e pass1 builds the symbol table

voi d passl(symbol table) {
unsigned |l c = O;

whi |l e (not EOF) {
read aline e.g., use Tabl e_get
save line in the temp file for pass 2 and Tabl e_put
I f (line contains a label) N
ent er (symbol table, label, | ¢)
I f (line contains a directive) {
I f (pass 1directive) :
process directive might change | ¢
} el se

| ¢ += | engt h(instrugtion)

might involve inspecting
instruction, operands, etc.

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler: Pass 1 Page 222

November 24, 1997

Assembler: Pass 2

e pass 2 reads the symbols built in pass 1

voi d pass2(symbol table) {
unsigned |l c = O;

whi |l e (not EOF) {
read aline from the temp file
I f (line contains a directive) {

i f (pass 2 directive) /\/ might change | c
process directive emit output

} else {
assemble and output instruction using definitions in symbol table
| ¢ += | engt h(instruction) ;

} may change some symbol
} table entries, e.g., use Tabl e_get

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler: Pass 2 Page 223

November 24, 1997

Assembler Features

* Multiple location counters: programmer/compiler divides program into
several logical segments Using assembler directives, and each segment
has its own location counter

.seg "text” .seg "text”
A,, | assembler may A
. Seg "data concatenate ___ C
B segments on .seg "data"
.seg "text" output B
C D
. seg "data"
D

multiple location counters affects both passes; may appear in object files

e Multiple location counters may be simply logical segments to facilitate
program organization or may be motivated by machine architecture

text segments are typically loaded into read-only memory and shared by other
processes

data are loaded into read/write memory, one cCopy per process

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler Features Page 224

November 24, 1997

Assembler Features, cont’d

® Macros
parameterized abbreviations for often-repeated instruction sequences
conditional assembly

no macros in UNIX assemblers; use the C preprocessor or n

® One-pass assemblers
assemble instructions in first pass
build a “fix-up table” for those instructions associated with undefined symbols

as symbols are defined, fix the instructions given in the table and remove them from the
table

good for in-memory assemblers

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Assembler Features, cont'd Page 225

