October 12, 1997

Condition Codes

e processor state register (psr)

impl ver icc EC E S g .EI. CWP
31 27 23 19 13 12 11 7 6 5 4

* integer condition codes — the icc field — holds 4 bits

N Z V C
23 22 21 20

set if the last ALU result was negative
set if the last ALU result was zero
set if the last ALU result overflowed

set if the last ALU instruction that modified icc caused a carry out of, or a
borrow into, bit 31

O<< NZ

e cc versions of the integer arithmetic instructions set all the codes

e cc versions of the logical instructions set only N and z

* tests on the condition codes implement conditionals and loops

e carry and overflow are used to implement multiple-precision arithmetic
e see page 28 in the SPARC Architecture Manual, 84.8 in Paul

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Condition Codes Page 154

October 12, 1997

Compare and Test

test and compare synthetic instructions set condition codes

to test a single value
tst reg orcc reg, %g0, %g0

compare two values
cnp Srcq, src, subcc srcq, src,, %90
cnp Src, value subcc src, value, %g0

using %g0 as a destination discards the result

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Compare and Test Page 155

October 12, 1997

Carry and Overflow

e if the carry bit (C) is set
the last addition resulted in a carry

or the last subtraction resulted in a borrow

e carry is needed to implement arithmetic using numbers represented in
several words, e.g. multiple-precision addition

addcc %3, %g5, Yg7
addxcc %2, Y94, Y96

(Y@6, %97) = (Y92, Y93) + (Ya4, %g5)

the most-significant word is in the even register;
the least-significant word is in the odd register

e overflow (V) indicates that the result of signed addition or subtraction
doesn't fit

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Carry and Overflow Page 156

Branches

October 12, 1997

e branch instructions transfer control based on icc

branches are format 2 instructions

— a —_
n
b {,a} |abel
vs. k« annul” bit; more later

00 | a cond 010

disp22

31 29 28 24 21

e target is a PC-relative address and is PC + 4 x disp22, where PC is the

address of the branch instruction

e unconditional branches

synthetic
branch condition synonym
ba branch always] np
bn branch never nop

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Branches

Page 157

Branches, cont'd

October 12, 1997

e raw condition-code branches

branch condition

bnz 1 Z
bz

bpos !
bneg

bcc !
bcs

bvc !
bvs

<<0OOZZN

e comparisons

branches sighed
be Z
bne 1 Z
bg bgu 1 (Z |
bl e bl eu Z |

bge bgeu I (NMV)

bl blu

Copyright ©1995 D. Hanson, K. Li & J.P. Singh

NV

synthetic
synonym
bgeu
bl u
unsigned
Z
1 Z
(N*V)) 1 (C | 2)
(NMV) C| Z
1 C

C

Computer Science 217: Branches, cont’d

synthetic
synonym

bz
bnz

Page 158

October 12, 1997

Control Transfer

e normally, instructions are fetched and executed from sequential
memory locations

* program counter, PC, is address of the current instruction, and the
program counter, nPC, is address of the next instruction: nPC = PC+4

* branches, control-transfer instructions change npc to something else

e control-transfer instructions

instruction type addressing mode

bicc conditional branches PC-relative

f bfcc floating point PC-relative

cbccc coprocessor PC-relative

] npl jump and link register indirect

rett return from trap register indirect

cal | procedure call PC-relative

ticc traps register-indirect vectored

* pc-relative addressing is like register displacement addressing that
uses PC as the base register

Copyright ©1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Control Transfer Page 159

Control Transfer, cont'd

October 12, 1997

* branches
00 | a cond 010 disp22
31 29 28 24 21

nPC = PC + 4 x signextend(disp22)

jumping to an arbitrary location may require two branches, but branches are used to

build conditionals and loops in “small’ code blocks

e calls

01

disp30

31

29

nPC = PC + 4 x zeroextend(disp30)

is multiplied by 4 because all instructions are word aligned

* position-independent code Is code whose correct execution does not

depend on where it is loaded, i.e., all instructions use pc-relative

addressing

Copyright ©1995 D. Hanson, K. Li & J.P. Singh

Computer Science 217: Control Transfer, cont’d

Page 160

Branching Examples

October 12, 1997

e |f-then-else

if (a > Db)
c = a;
el se
c = b;

becomes

* loops

#define a %O
#define b % 1
#define ¢ % 3

L1:
L2:

cnmp a, b
ble L1; nop
nov a,c
ba L2; nop
nov b, c

Copyright ©1995 D. Hanson, K. Li & J.P. Singh

Computer Science 217: Branching Examples

for (i =0; I <
becomes
#define i %0
#define n % 1
clr i
L1: cnp i,n
bge L2; nop
inc i
ba L1; nop
L2:
* | cc generates
clr i
ba L5; nop
L2: ...
I nc i
L5: cnp i,n
bl L2; nop

n,

| ++)

Page 161

