

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Condition Codes Page 154

October 12, 1997

Condition Codes

•

processor state register (

psr

)

•

integer condition codes — the

 icc

field — holds 4 bits

N

set if the last ALU result was

n

egative

Z

set if the last ALU result was

z

ero

V

set if the last ALU result o

v

erflowed

C

set if the last ALU instruction that modified

icc

 caused a

c

arry out of, or a
borrow into, bit 31

•

cc

versions of the integer arithmetic instructions set all the codes

•

cc

versions of the logical instructions set only

N

 and

Z

•

tests on the condition codes implement conditionals and loops

•

carry and overflow are used to implement multiple-precision arithmetic

•

see page 28 in the SPARC Architecture Manual, §4.8 in Paul

impl ver icc

EC E
F S P

S
E
T CWP

31 27 23 19 13 12 11 7 6 5 4

N Z V C

23 22 21 20

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Compare and Test Page 155

October 12, 1997

Compare and Test

•

test and compare

synthetic

 instructions set condition codes

•

to test a single value

t

st

reg

orcc

reg

,%g0,%g0

•

compare two values

cmp , subcc , ,%g0

cmp

src

,

value

subcc

src

,

value

,%g0

•

using

 %g0

as a destination discards the result

src

1

src

2

src

1

src

2

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Carry and Overflow Page 156

October 12, 1997

Carry and Overflow

•

if the carry bit (

C

) is set

the last addition resulted in a carry

or the last subtraction resulted in a borrow

•

carry is needed to implement arithmetic using numbers represented in
several words, e.g. multiple-precision addition

addcc %g3,%g5,%g7
addxcc %g2,%g4,%g6

(

%g6,%g7

) = (

%g2,%g3

) + (

%g4,%g5

)

the

most-significant word

 is in the

even

 register;
the

least-significant word

 is in the

odd

 register

•

overflow (

V

) indicates that the result of signed addition or subtraction
doesn’t fit

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Branches Page 157

October 12, 1997

Branches

•

branch instructions transfer control based on

icc

branches are format 2 instructions

•

target is a

PC-relative

 address and is , where is the
address of the branch instruction

•

unconditional branches

synthetic
branch condition synonym

ba

branch always

jmp
bn

branch never

nop

00 a cond 010 disp22

31 29 28 24 21

b

a

n

…

vs

,a

{ }

label

“annul” bit; more later

PC

4

disp

22

+

PC

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Branches, cont’d Page 158

October 12, 1997

Branches, cont’d

•

raw condition-code branches

synthetic
branch condition synonym

bnz !

Z

bz

Z

bpos !

N

bneg

N

bcc !

C

bgeu
bcs

C

blu
bvc !

V

bvs

V

•

comparisons

synthetic
branches signed unsigned synonym

be

Z

Z

bz
bne !

Z

!

Z

bnz
bg bgu !(

Z

 | (

N

^

V

)) !(

C

 |

Z

)
ble bleu

Z

 | (

N

^

V

)

C

 |

Z

bge bgeu !(

N

^

V

) !

C

bl blu

N

^

V

C

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Control Transfer Page 159

October 12, 1997

Control Transfer

•

normally, instructions are fetched and executed from sequential
memory locations

•

program counter,

PC

, is address of the current instruction, and the
program counter,

nPC

, is address of the next instruction:

•

branches, control-transfer instructions change

nPC

 to something else

•

control-transfer instructions

instruction type addressing mode

b

icc

conditional branches

PC

-relative

fb

fcc

floating point

PC

-relative

cb

ccc

coprocessor

PC

-relative

jmpl

jump and link register indirect

rett

return from trap register indirect

call

procedure call

PC

-relative

t

icc

traps register-indirect vectored

•

PC

-relative addressing is like register displacement addressing that
uses

PC

 as the base register

nPC PC

4+=

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Control Transfer, cont’d Page 160

October 12, 1997

Control Transfer, cont’d

•

branches

jumping to an arbitrary location may require two branches, but branches are used to
build conditionals and loops in “small” code blocks

•

calls

is multiplied by 4 because all instructions are word aligned

•

position-independent

 code is code whose correct execution does not
depend on where it is loaded, i.e., all instructions use

PC-

relative
addressing

00 a cond 010 disp22

31 29 28 24 21

01 disp30

31 29

nPC PC

4 signextend

disp22

()

+=

nPC PC

4 zeroextend

disp30

()

+=

Copyright

1995 D. Hanson, K. Li & J.P. Singh Computer Science 217: Branching Examples Page 161

October 12, 1997

Branching Examples

•

if-then-else

if (a > b)
c = a;

else
c = b;

becomes

#define a %l0
#define b %l1
#define c %l3

cmp a,b
ble L1;

nop

mov a,c
ba L2;

nop

L1: mov b,c
L2: ...

•

loops

for (i = 0; i < n; i++)
...

becomes

#define i %l0
#define n %l1

clr i
L1: cmp i,n

bge L2; nop
...
inc i
ba L1; nop

L2:

•

lcc

generates

clr i
ba L5; nop

L2: ...
inc i

L5: cmp i,n
bl L2; nop

