October 12, 1997

Conversions

* To convert from decimal to binary, divide by 2 repeatedly, read
remainders up.

» Easier to convert to octal, then to binary

Copyright 111995 D. Hanson, K. Li & JP: Singh Computer Science 217: Corversions Page 120

October 12, 1997

Number Systems

¢ General form of a number in base b is

where are the positional coefficients

* Modern computers use binary arithmetic, i.e., base 2

Copyright (11995 D. Hanson, K. Li & JP. Singh Computer Science 217: Number Systems. Page 119

October 12, 1997

Multiplication

* Multiplication in base 2: 00101101 * 10111001

1 00101101
0 00000000
00101101
00101101
00101101
00000000
00000000
00101101

RPOORRER

010000010000101

* The product has about as many digits as the two operands combined,
i.e.

Copyright 111995 D. Hanson, K. Li & JP: Singh Computer Science 217: Multiplication Pege 122

October 12, 1997

Addition

¢ Addition in base b

where , ,and where
* Addition in base 2:

00101101
+ 10011001

11000110

* the sum might have one more digit than the largest operand

Copyright (11995 D. Hanson, K. Li & JP. Singh Computer Science 217: Addition Page 121

October 12, 1997

Sign Magnitude and One’s Complement

* Sign-magnitude notation:
bit is the sign; O for +, 1 for -
bits through 0 hold an unsigned number

largest number

smallest number

* Addition and subtraction are complicated when signs differ
¢ Sign-magnitude is rarely used

* One’s-complement notation: -k=(2"-1)-k=11111...(n bits) - k

bit is the sign; bits through 0 hold an unsigned number
bits through 0 hold complement of negative numbers

largest number

smallest number

* Addition and subtraction are easy, but there are 2 representations for 0

Copyright 111995 D. Hanson, K. Li & JP: Singh Computer Science 217: Sign Magnitude and One's Complement Page 124

October 12, 1997

Machine Arithmetic

e Computers usually have a fixed number of binary digits (“bits”), e.g., 32
bits

* For example, using 6 bits, numbered 0 to 5 from the right
largest number

smallest number

What is 50 + 20?

110010
+ 010100

1000110

The highest bit doesn't fit, so we get

Spilling over the lefthand side is overflow

Copyright (11995 D. Hanson, K. Li & JP. Singh Computer Science 217: Machine Arithmetic Page 123

October 12, 1997

Two’s Complement, Cont’d

* Adding 2’s-complement numbers: ignore signs, add unsigned bit strings

+20 010100 -20 101100
+ - 7 + 111001 + + 7 + 000111
+13 001101 -13 110011
+20 010100 -20 101100

+ + 7 + 000111 + - 7 + 111001

+27 011011 -27 100101

* Signed overflow occurs if
the carry into the sign bit differs from the carry out of the sign bit

+20 010100 -20 101100
+ +17 + 010001 +-17 + 101111
-27 100101 +27 011011
* Same hardware for both unsigned and signed, but flags two conditions
overflow signed overflow
carry unsigned overflow
Copyright [11995 D. Hanson, K. Li & JP. Singh Computer Science 217: Two's Complement, Cont'd Page 126

October 12, 1997

Two’s Complement

* Two’s-complement notation:

k=2"-k=(2"-1)-k+1

bit is the sign; bits through 0 hold an unsigned number
bits through 0 hold the complement of a negative number plus 1

largest number

smallest number ; note asymmetry

* To negate a 2's compl. number: first complement all the bits, then add 1

start with complement increment
+6 000110 111001 111010 -6
-6 111010 000101 000110 +6
+0 000000 111111 000000 -0
+1 000001 111110 111111 -1
+31 011111 100000 100001 -31
-31 100001 011110 011111 +31
[-32] 100000 | 011111 | 100000 | -32 |

Copyright (11995 D. Hanson, K. Li & JP. Singh

Computer Science 217: Two's Complement

Page 125

October 12, 1997

Floating Point Numbers

* Floating point numbers are like scientific notation

* Significand restricted to range, e.g., , and fixed number of digits

* Floating point is approx. representation for infinitely many real numbers
m is an n-bit significand or fraction
is the base (usually 2)

k isthe exponent
e.g. for base 2

Copyright 111995 D. Hanson, K. Li & JP: Singh Computer Science 217: Floating Point Numbers Page 128

October 12, 1997

Sign Extension

* To convert from a small signed integer to a larger one, copy the sign bit

+5 -5
4 bits 0101 1011
8 bits 00000101 11111011

* To convert a large signed integer to a smaller one: check trunced bits

October 12, 1997

IEEE Floating Point

* |[EEE format uses a hidden bit to increase precision by 1 bit
all normalized floating point numbers have the form ,

so assume the leading 1 and omit it

* Single precision (f 1 oat) format

’ 1

* Values 1. 1754943508222875e- 38 t0O 3. 40282346638528860000e+38

k= f f. p. number

NaN (signaling/quiet)

(denormalized)

Copyright 111995 D. Hanson, K. Li & JP. Singh Computer Science 217: IEEE Floating Point Page 130

October 12, 1997

Floating Point Numbers, cont’d

+5 -5

8 bits 00000101 11111011
4 bits 0101 1011 OK!

+20 -20

8 bits 00010100 11101100
4 bits 0100 1100 Bad!

¢ Hardware does extension, but may not check for truncation; nor does C

short small = -50; long big = small;
printf("% %\n, snall, big); -50 -50
| ong big = 40000; short small = big;
printf ("%l %\ n", bi g); -25536 40000
char ¢ = 255;
printf("%\n", c); -1
Copyright (11995 D. Hanson, K. Li & JP. Singh Computer Science 217: Sign Extension Page 127

* Normalized floating point numbers make the representation unique
most significant digit is nonzero, e.g.,

for floating point numbers, or
i.e., when , most significant bit of mis 1
* Example:
k
-1 0 1 2
100 | 5 1. 2.

1.01 .625 1.25 25

1.10 .75 15 3.

111 .875 1.75 3.5
125 .25 5

PN o o &

* What about 0.0? Use reserved values of k, e.g.,
for 0.0, for

Copyright (11995 D. Hanson, K. Li & JP. Singh Computer Science 217: Floating Point Numbers, cont'd Page 120

October 12, 1997

IEEE Floating Point, cont’d

* Double precision (doubl €) format

’ i

* Values: 2. 2250738585072014e- 308 10 1.7976931348623157e+308

k= f f. p. number

NaN (signaling/quiet)

(denormalized)

* Biased exponents in the most-significant bits are useful because
integer compare instructions can be used to compare floating point values
a bit string of 0's represents the value 0.0

Copyright (11995 D. Hanson, K. Li & JP. Singh Computer Science 217: |EEE Floating Point, cont'd Page 131

