September 10, 1997

Everything is on the Web

e http://www.cs.princeton.edu/courses/cs217

¢ Texts, Contact Information, Assignments, Lecture slides ...
* No handouts in class (except blank paper for quizzes)

* 9 assignments, including a final project
¢ due on Monday at midnight. NO EXTENSIONS.

* A few easy quizzes (15 min each, in-class)

¢ Midterm
¢ No final
Corpright 01595 D, anson, K. L & 1P Singh Comper Siene 217 Everytring son he Web page2
S—
About COS 217
e Goals:

* Prepare for other CS courses (and summer jobs)
* Learn everything you need to know about ANSI C
* Master the art of programming
- design method, abstraction, interfaces and implementations, style

- writing efficient programs

* Introduction to aspects of other courses
* Low-level workings of a computer (more in COS 471))
- SUN's SPARC architecture and instruction set
* Assembly language programming (more in COS 320 and COS 471)
* Operating systems (more in COS 318 and COS 461)
- Programming using operating system services

* Object-oriented programming

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: About COS 217 Page1

‘September 10, 1997

Interfaces and Implementations

* A big program is made up of many small modules

* Each module implements (does) one thing
Mathematical functions
A hash table
A stack

* Interfaces specify what a module does

* Implementations specify how a module does it

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Interfaces and Implementations Paged

‘September 10, 1997

This Course is About ...

* Modules, interfaces and implementations

Add_Box_To_Pi cture (Box, Picture, Position) Dr awi ng_Pr ogr an()
{ {

do other things

Al gorithmto inplenent function Add_Box_t o_Pi cture(B, P, Pos)

do other things

* What's the module, interface, implementation, client?

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: This Courseis About Page3

September 10, 1997

More on Interfaces and Implementations

* One interface, perhaps many implementations. Why?

efficiency, different algorithms for different situations, machine dependences
* Interface and its implementations must agree

* Clients need see only the interface
do not need to understand implementation to use the module
may have only the object code for an implementation

» why might a client want to know more than the interface?

* Clients share interface and implementations

avoids duplication and bugs --- implemented once, used often

* What does this sound like in your programming experience?

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: More on Interfaces and Implementations Page6

September 10, 1997

Interfaces and Implementations: An Example

Driving an automobile

* Interface:
* steering wheel
* gears
* brake
* accelerator
* clutch?

* Implementation:

* engine and all its details

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Interfaces and Implementations: An Example Pages

‘September 10, 1997

Interfaces

Modules export interfaces, clients import them

* Interfaces specify what clients may use or read
Data types, variables, function interfaces, text specifications, ...

Everything a client needs to see
* They hide implementation details and algorithms
* In C, an interface is usually a single “. h”file; e.g. st ack. h

* Interfaces are contracts between their implementations and clients
Client responsibilities : rules clients must follow to ensure correctness

Checked runtime errors implementations guarantee to detect them, but

they are bugs
Unchecked runtime errors : implementations might not detect them

Performance criteria : implementations must meet them

* Examples from the real world?

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Interfaces Page8

‘September 10, 1997

Client, Interface and Implementation: A Stack

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Client, Interface and Implementation: A Stack Page 7

September 10, 1997

Abstract Data Types (ADTS)

Copyright ©1995 D. Hanson, K. Li & JP: Singh

Abstract data type: A kind of interface

* A data type, plus
* Operations on entities ("variables") of that type

Data type: a class of values

integers, reals, lists of integers, binary search trees, lookup tables ...

Abstract: Operations permitted are indept. of internal representation

Advantages

* Restricts manipulation of the values to a set of specified operations
* Hides how the ADT is represented

A key idea behind object-oriented programming

BUT GOOD PROGRAMMING PRACTICE REGARDLESS OF LANGUAGE

Computer Science 217: Abstract Data Types (ADTS) Page 10

September 10, 1997

Implementations

Copyright ©1995 D. Hanson, K. Li & JP. Singh

Implementations instantiate an interface
In C, implementation source code is in “. c” files

The interface is the key

Some important things to do:

* De-couple clients from implementations
- Changes in an implementation do not affect clients

- Implementations can be shared, e.qg. via libraries

* Hide implementation details

- Prevents dependency on specific representations and algorithms

* Separate use of an interface from its implementations

- User should read specifications, not programs

Computer Science 217: Implementations Page9

‘September 10, 1997

An Implementation of the Stack ADT

e stack.c

#i ncl ude <assert.h>
#i nclude <stdlib. h>
#i ncl ude "stack. h"
#define T Stack_T

struct T { void *val; T next; };

T Stack_new(void) { T stk = calloc(1, sizeof *stk);
assert(stk); return stk; }

int Stack_enpty(T stk) { assert(stk); return stk->next == NULL; }

voi d Stack_push(T stk, void *x) {
Tt = malloc(sizeof *t); assert(t); assert(stk);
t->val = x; t->next = stk->next; stk->next =t; }

void *Stack_pop(T stk) { void *x; T s; assert(stk && stk->next);
X = stk->next->val; s = stk->next; stk->next = stk->next->next;
free(s); return x; }

void Stack_free(T *stk) { T s; assert(stk & *stk);
for (; *stk; *stk =s) {
s = (*stk)->next; free(*stk);
}

* Convention: In implementation, “T” is abbreviation of “X_T" for ADT X.

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: An | npl ement ation of the Stack ADT Page 12

‘September 10, 1997

An ADT Example: A Stack Again

Copyright ©1995 D. Hanson, K. Li & JP. Singh

* The interface st ack. h defines a stack ADT and its operations

#i f ndef STACK_| NCLUDED
#defi ne STACK_| NCLUDED

typedef struct Stack_T *Stack_T;

extern Stack_T Stack_new(void);

extern int Stack_enpty(Stack_T stk);

extern void Stack_push(Stack_T stk, void *x);
extern void *Stack_pop(Stack_T stk);

extern void Stack_free(Stack_T *stk);

/* 1t is a checked runtime error to pass a NULL Stack_T or Stack_T* to
any routine in this interface or call Stack_pop with an enpty stack. */

#endi f

* The type “St ack_T"is an opaque pointer type

¢ Clients can pass a Stack_T around, but can't look inside one

* “St ack_"is a disambiguating prefix

* A convention that helps avoid name collisions in large programs

* Question: What does “#i f ndef STACK_| NCLUDED’ do?

Computer Science 217: AnADT Example: A Stack Again Page 11

September 10, 1997

Assertions

* Even checked runtime errors are bugs

e assert(e) issues a message and aborts the program ifeis 0

int Stack_enpty(T stk){
assert (stk);
return stk->next == NULL;

}

e assert.h (approximately):

#i f def NDEBUG
#define assert(e) ((void)O0)

#el se

#define assert(e) ((void)((e)|| (fprintf(stderr, \
"assertion failed: file %, line %\n", \
__FILE_, __LINE_), abort(), 0)))

#endi f

| cc - DNDEBUG f 00. ¢

® Be careful using assertions

emay not be executed if assertions are turned off (why would you do this?)
— don’t put code with side effects in an assertion

* Don’'t want program to crash without a diagnostic (safe programming)

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: Assertions Page 14

September 10, 1997

A Sample Client of the Stack ADT

* test.c includes stack.h (so it can use the stack ADT)

#include <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude "stack. h"

int main(int argc, char *argv[]) {
int i;
Stack_T s = Stack_new();
for (i =1; i < argc; i++)
Stack_push(s, argv[i]);
while (!Stack_enmpty(s))
printf("%\n", Stack_pop(s));
Stack_free(&s);
return EXI T_SUCCESS;
}

* test.o is aclient of stack. h

changing st ack. h — must re-compile test.c

* test.o isloaded with stack.o

lcc test.o stack.o

¢ stack.o is also a client of stack. h

changing st ack. h — must re-compile st ack. c

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: A Sample Client of the Stack ADT Page 13

‘September 10, 1997

The Standard C Library Interfaces

* The ANSI C interfaces (See H&S, Ch 10)

assert.h assertions

ctype.h character mappings
errno. h error numbers
float.h metrics for floating types

limts.h metrics for integral types
| ocale. h locale specifics

mat h. h math functions
setjnp.h non-local jumps

signal . h signal handling

stdarg. h variable length argument lists
stddef.h standard definitions
stdio. h standard I/O

stdlib.h standard library functions
string.h string functions

time.h date/time functions

* An ANSI C library provides the implementations

* re-use, don't re-implement; use libraries

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: The Standard C Library Intesfaces Page 16

‘September 10, 1997

Programming Style

* Variable names, indentation, program structure... Why?

* Who reads your programs?
compiler
users

other programmers
* Which ones care about style?

* Which ones do you program for?

* Difference between "macho" programmer and good programmer

* We'll talk more about style later

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Programming Style Page 15

September 10, 1997

The Standard C Library, cont’d

» Utility functions stdl i b. h:

atof, atoi, strtod, rand, gsort, getenv,
calloc, malloc, realloc, free, abort, exit,

¢ String handling string. h:

strcnp, strncnp, strcpy, strncpy
strcat, strncat, strchr, strrchr, strlen,
nencpy, nmenmove, menmcnp, nemset, nenchr

* Character classification ct ype. h:

isdigit, isalpha, isspace, ispunct,
i supper, islower, toupper, tolower,

* Mathematical functions mat h. h:

sin, cos, tan, asin, acos, atan, atan2, ceil, floor, fabs
sinh, cosh, tanh, exp, log, |10g10, pow, sqrt,

* Variable-length argument lists st dar g. h:

va_list, va_start, va_arg, va_end

Non-local jumps setj np. h:
jnp_buf, setjnp, |ongjnm

Copyright ©1995 D. Hanson, K. Li & JP: Singh Computer Science 217: The Standard C Library, cont'd Page 18

September 10, 1997

Libraries

* So why don't people always just use libraries?

* It's a great idea, but often not implemented well
* Efficiency
* Specific functionality
* Mastering big libraries is hard
e Library design is difficult: generality, simplicity and efficiency

e Libraries may have implementation bugs

Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: Libraries Page 17

‘September 10, 1997
The Standard 1/O Library
* stdi 0. h specifiesa FI LE*, a good example of an ADT
extern FILE *stdin, *stdout, *stderr;
extern int fclose(FILE *);
extern FILE *fopen(const char *, const char *);
extern int fprintf(FILE *, const char *, ...);
extern int fscanf(FILE *, const char *, ...);
extern int printf(const char *, ...);
extern int scanf(const char *, ...);
extern int sprintf(char *, const char *, ...);
extern int sscanf(const char *, const char *, ...);
extern int fgetc(FILE *);
extern char *fgets(char *, int, FILE *);
extern int fputc(int, FILE *);
extern int fputs(const char *, FILE *);
extern int getc(FILE *);
extern int getchar(void);
extern char *gets(char *);
extern int putc(int, FILE *);
extern int putchar(int);
extern int puts(const char *);
extern int ungetc(int, FILE *);
extern int feof (FILE *);
® Do you need to know what a FI LE* | ooks |ike?
Copyright ©1995 D. Hanson, K. Li & JP. Singh Computer Science 217: The Standard 1/0 Library Page 19

