
Network Programming
(Part 2)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Communication using char sequences
– Communication using JSON docs
– Communication using pickled Python objects

2

Agenda

• Running example
• Communication using char sequences
• JSON
• Communication using JSON
• Improper communication using JSON
• Communication using pickled Python

objects

3

Example: Courses and Books

Running Example

4

book0 = {'title': 'C Programming', 'price': 88.55}
book1 = {'title': 'The Practice of Programming', 'price': 35.14}
course0 = {'name': 'COS 217', 'book': book0}
course1 = {'name': 'COS 333', 'book': book1}
courses = [course0, course1]

Example (cont.):

{'name': 'cos 217';
 'book': }

Running Example

5

[,]

{'title': 'C Pgmming';
 'price': 88.55}

{'name': 'cos 333';
 'book': }

{'title': 'The PoP';
 'price': 35.14}

courses

dict

Example (cont.):

dict

dict

Running Example

6

list

dict

ServerClient

dictdict

dict

list

dict

Agenda

• Running example
• Communication using char sequences
• JSON
• Communication using JSON
• Improper communication using JSON
• Communication using pickled Python

objects

7

Comm Using Char Sequences

• See commchars app

8

$ python client.py 192.168.1.8 55555 (2)
COS 217 (4)
C Programming, 88.55 (4)
 (4)
COS 333 (4)
The Practice of Programming, 35.14 (4)
 (4)
$

$ python server.py 55555 (1)
Opened server socket (1)
Accepted connection (3)
Wrote to client (3)

Server: On host 192.168.1.8

Client

Comm Using Char Sequences

• See commchars app (cont.)
– client.py
– server.py

9

Agenda

• Running example
• Communication using char sequences
• JSON
• Communication using JSON
• Improper communication using JSON
• Communication using pickled Python

objects

10

JSON

• JavaScript Object Notation (JSON)
– A JSON document is a char sequence

representation of a JavaScript data structure
– JavaScript data structure can consist of:

• Strings, Numbers, Booleans, or null
• Objects or arrays having properties that are

Strings, Numbers, Booleans, objects, arrays, or
null

11

Unavoidable forward
reference to JavaScript

JSON

• Observation
– A char sequence rep of a JavaScript data

structure is similar to a char sequence rep of
a Python data structure

– So…

12

JSON

• JavaScript Object Notation (JSON)
– A JSON document is (more or less) a char

sequence representation of a Python data
structure

– Python data structure can consist of:
• str, int, float, or bool objects, or None
• list objects having elements that are str, int,
float, bool, list, or dict objects, or None

• dict objects having keys and values that are
str, int, float, bool, list, or dict
objects, or None

13

JSON

• json_doc = json.dumps(obj)
– Converts Python object to JSON doc

• obj = json.loads(json_doc)
– Converts JSON doc to Python object

14

JSON

15

$ python
Python 3.12.4 (main, Jun 8 2024, 18:29:57) [GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import json
>>> somelist1 = ['Ruth', 'Gehrig']
>>> somelist1
['Ruth', 'Gehrig']
>>> jsondoc = json.dumps(somelist1)
>>> jsondoc
'["Ruth", "Gehrig"]'
>>> somelist2 = json.loads(jsondoc)
>>> somelist2
['Ruth', 'Gehrig']
>>>

Python
object of
class list

Python
object of
class str

Python
object of
class list

JSON

16

$ python
Python 3.12.4 (main, Jun 8 2024, 18:29:57) [GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import json
>>> somedict1 = {'Ruth': 3, 'Gehrig': 4}
>>> somedict1
{'Ruth': 3, 'Gehrig': 4}
>>> jsondoc = json.dumps(somedict1)
>>> jsondoc
'{"Ruth": 3, "Gehrig": 4}'
>>> somedict2 = json.loads(jsondoc)
>>> somedict2
{'Ruth': 3, 'Gehrig': 4}
>>>

Python
object of
class dict

Python
object of
class str

Python
object of
class dict

JSON

17

$ python
Python 3.12.3 (main, Sep 11 2024, 14:17:37) [GCC 13.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> book0 = {'title': 'C Programming', 'price': 88.55}
>>> book1 = {'title': 'The Practice of Programming', 'price': 35.14}
>>> course0 = {'name': 'COS 217', 'book': book0}
>>> course1 = {'name': 'COS 333', 'book': book1}
>>> courses = [course0, course1]
>>> courses
[{'name': 'COS 217', 'book': {'title': 'C Programming', 'price': 88.55}},
{'name': 'COS 333', 'book': {'title': 'The Practice of Programming', 'price':
35.14}}]
>>> import json
>>> jsondoc = json.dumps(courses)
>>> jsondoc
'[{"name": "COS 217", "book": {"title": "C Programming", "price": 88.55}},
{"name": "COS 333", "book": {"title": "The Practice of Programming", "price":
35.14}}]'
>>> courses2 = json.loads(jsondoc)
>>> courses2
[{'name': 'COS 217', 'book': {'title': 'C Programming', 'price': 88.55}},
{'name': 'COS 333', 'book': {'title': 'The Practice of Programming', 'price':
35.14}}]
>>>

Python
object of
class list

Python
object of
class str

Python
object of
class list

Agenda

• Running example
• Communication using char sequences
• JSON
• Communication using JSON
• Improper communication using JSON
• Communication using pickled Python

objects

18

Comm Using JSON

• See commjson app

19

$ python client.py 192.168.1.8 55555 (2)
COS 217 (4)
C Programming, 88.55 (4)
 (4)
COS 333 (4)
The Practice of Programming, 35.14 (4)
 (4)
$

$ python server.py 55555 (1)
Opened server socket (1)
Accepted connection (3)
Wrote to client (3)

Server: On host 192.168.1.8

Client

Comm Using JSON

• See commjson app (cont.)
– client.py
– server.py

20

Comm Using JSON

21

…
flo.write(json_str + '\n')
…

Server (given)
…
json_str = flo.readline()
json_str = json_str.rstrip()
…

Client (given)

…
flo.write(json_str)
…

Server (alternative)
…
json_str = flo.read()
…

Client (alternative)

The alternative won’t work for the echo app

Agenda

• Running example
• Communication using char sequences
• JSON
• Communication using JSON
• Improper communication using JSON
• Communication using pickled Python

objects

22

Previously:

Communicating JSON

23

book0 = {'title': 'C Programming', 'price': 88.55}
book1 = {'title': 'The Practice of Programming', 'price': 35.14}
course0 = {'name': 'COS 217', 'book': book0}
course1 = {'name': 'COS 333', 'book': book1}
courses = [course0, course1]

Previously:

{'name': 'cos 217';
 'book': }

Improper Comm Using JSON

24

[,]

{'title': 'C Pgmming';
 'price': 88.55}

{'name': 'cos 333';
 'book': }

{'title': 'The PoP';
 'price': 35.14}

courses

dict

Previously:

dict

dict

Improper Comm Using JSON

25

list

dict

ServerClient

dictdict

dict

list

dict

Now:

Improper Comm Using JSON

26

book0 = {'title': 'C Programming', 'price': 88.55}
book1 = {'title': 'The Practice of Programming', 'price': 35.14}
course0 = {'name': 'COS 217', 'book': book0}
course1 = {'name': 'COS 333', 'book': book1}
courses = [course0, course1]

book0 = {'title': 'C Programming', 'price': 88.55}
book1 = {'title': 'The Practice of Programming', 'price': 35.14}
course0 = {'name': 'COS 217', 'book': book1}
course1 = {'name': 'COS 333', 'book': book1}
courses = [course0, course1]

Now:

{'name': 'cos 217';
 'book': }

Improper Comm Using JSON

27

[,]

{'name': 'cos 333';
 'book': }

{'title': 'The PoP';
 'price': 35.14}

courses

dict

Example (cont.):

dict

dict

Improper Comm Using JSON

28

list

ServerClient

dictdict

dict

list

Improper Comm Using JSON

• See commjsonbad app
– client.py
– server.py

29

Improper Comm Using JSON

30

JSON document that the server sends to the client:

[
 {
 "name": "COS 217",
 "book":
 {
 "title": "The Practice of Programming",
 "price": 35.14
 }
 },
 {
 "name": "COS 333",
 "book":
 {
 "title": "The Practice of Programming",
 "price": 35.14
 }
 }
]

Agenda

• Running example
• Communication using char sequences
• JSON
• Communication using JSON
• Improper communication using JSON
• Communication using pickled Python

objects

31

Comm Using Pickles

• pickle.dump(obj, flo)
– Serializes obj to byte sequence
– Writes byte sequence to flo

• obj = pickle.load(flo)
– Reads byte sequence from flo
– Deserializes byte sequence to form obj

32

Comm Using Pickles

• See commpickle app (cont.)
– client.py
– server.py

33

dict
In server:

dict

dict

Comm Using Pickles

34

list

dictdict

dict

list
In client:

See
commpickle
app

It works!

Lecture Summary

35

Comm Using
Chars

Comm Using
JSON

Comm Using
Pickles *

Convenience - + +
Programming
language
independence

+ + -

Handling of
object graphs - - +

* Java has a similar mechanism: Serializable
 interface

Lecture Series Summary
• In this lecture series we covered:

– Network programming concepts
– Network programming in Python

• How to compose a client
• How to compose a server
• Communication usingchar sequences
• Communication using JSON docs
• Communication using pickled Python objects

• See also…
– Appendix 1: Pickle Dangers
– Appendix 2: Network Basics
– Appendix 3: The Internet

36

More Information

• The COS 333 Lectures web page
provides references to supplementary
information

37

Appendix 1:
Pickle Dangers

38

Pickle Dangers

• Question: How does pickling work?
• Answer (partial):

– pickle.dump(obj, flo)
• Creates Python bytecode

– The Python bytecode, when executed, creates obj
• Writes the Python bytecode to flo

– obj = pickle.load(flo)
• Reads the Python bytecode from flo
• Executes it to create obj

39

Pickle Dangers

• See commmalicious app

40

$ python server.py 55555 (1)
Opened server socket (1)
Accepted connection (4)
Wrote to client (4)

$ cat badfile.txt (2)
cat: badfile.txt: No such file or directory (2)
$ python client.py 192.168.1.8 55555 (3)
client.py: 'int' object is not iterable (5)
$ cat badfile.txt (6)
hello there (6)
$

Server: On host 192.168.1.8

Client

Pickle Dangers

• See commmalicious app
– server.py
– client.py

41

When using the Python pickle module to
communicate sensitive data, you must use
secure communication (covered in the 2nd half
of the course)

Appendix 2:
Network Basics

42

Network Basics

• Networking
– Huge topic
– Can only scratch the surface

• Goal
– Convey workable mental model
– … From programmer’s point of view

• Approach
– Bottom-up...

43

Host Computer

Network
Adapter

Network adapter:
 HW that connects host computer to network
 Each has unique "medium access control (MAC) address"
MAC address:
 xx:xx:xx:yy:yy:yy, where each x and y is a hexadecimal digit
 xx:xx:xx is unique to vendor
 yy:yy:yy is unique to device

Network Basics

44

Network

Network Basics

• Try on your computer (Mac or Linux):
– ifconfig
– Note “ether”

• Try on your computer (Windows):
– getmac

45

Host1
Adapter

Hub

Frame = header + payload
 Header identifies source and destination addresses
 Payload contains user data
Hub (alias repeater) = HW (no SW) that transmits frames among hosts
 Receives frame from adapter; doesn’t examine header; copies to all others
 Every adapter sees frame; only destination adapter reads it
Network Segment = hosts + hub
 Scope: one room; one floor of a building

header payload

frame

Host2
Adapter

header payload

frame

Network
Segment

Network Basics

46

Host1

Hub1

Host2

Host3Bridge1

Bridge2

Host4

Hub3

Host5 Host6

Hub4

Host7

LAN

Bridge (alias switch) = HW+SW that connects hosts, hubs, other bridges
 Does examine headers
 Analyzes message sources; learns where hosts are
 host1 → host2: hub1 → bridge1 → (discard)
 host1 → host7: hub1 → bridge1 → bridge2 → hub4
Local Area Network (LAN) = hosts + hubs + bridges
 Scope: one building; one campus

Network Basics

47

LAN1 LAN2

Router

Router (~alias gateway) = HW that connects multiple (incompatible) LANs
Wide Area Network (WAN) = LANs + routers
 Scope: planet Earth! And beyond!
Each host has both a LAN (MAC) address and a WAN address
 LAN address: not related to network topology
 WAN address: related to network topology

WAN

Network Basics

48

Host
1

Protocol SW
on Host1

LAN1 Adapter
on Host1

LAN1 header
(MAC addr of Router)

WAN header
(WAN addr of Host2)

LAN1 frame

payload

WAN packet

payload

Hub

Bridge

When Host1 on LAN1 sends
a payload to Host2 on LAN2...

Network Basics

49

Router
LAN1 Adapter

Protocol SW
on Router

LAN1 header
(MAC addr of Router)

WAN header
(WAN addr of Host2)

LAN1 frame

payload

WAN packet

WAN header
(WAN addr of Host2) payload

WAN packet

Network Basics

50

Router

LAN2 Adapter
Protocol SW

on Router

WAN header
(WAN addr of Host2) payload

WAN packet

LAN2 header
(MAC addr of Host2)

WAN header
(WAN addr of Host2)

LAN2 frame

payload

WAN packet

Network Basics

51

Host2

Protocol SW
on Host2

LAN2 Adapter
on Host2

payload

Hub

Bridge

LAN2 header
(MAC addr of Host2)

WAN header
(WAN addr of Host2)

LAN2 frame

payload

WAN packet

Network Basics

52

Level 0 header Level 1 header

Level 0 packet

payloadLevel 2 header ...

Level 2 packet

Level 1 packet

Protocols can be (and typically are) layered/stacked
And so packets can be (and typically are) layered/stacked

Generic Packet Structure

Network Basics

53

Appendix 3:
The Internet

54

The Internet

• The Internet
– A WAN that uses a particular protocol stack

55

Internet Layer IP …
TCP UDP …

HTTP, HTTPS,
SMTP, POP3, IMAP,
FTP, SFTP
telnet, SSH,
daytime, echo,
DNS, …

…

Transport Layer

Application Layer

LAN header IP header payloadTCP header ...App header

Typical Internet Packet Structure

The Internet

56

The Internet Protocol Stack

Dominant protocol: IP (Internet Protocol)…

IP …
TCP UDP …

HTTP, HTTPS,
SMTP, POP3, IMAP,
FTP, SFTP
telnet, SSH,
daytime, echo,
DNS, …

…

The Internet

57

Internet Layer
Transport Layer

Application Layer

The Internet Protocol Stack

The Internet

• IP characteristics
– Connectionless

• No persistent connection
– Packetized

• Sender splits long message into packets
• Receiver re-assembles the packets

– Unreliable
• Packets can be lost (errors, congestion)
• Receiver not notified of lost packets

58

The Internet

• IP Header
– Source WAN address
– Destination WAN address
– …

59

The Internet

• IP addresses
– WAN address = IP address
– Internal form: 32 bits
– Human-readable form: “dotted decimal”

• xxx.xxx.xxx.xxx

60

The Internet

61

IP Address Computer
128.112.136.61 Princeton CS Dept computer
129.6.15.28 A US gov computer
127.0.0.1 The local host

Some IP Addresses:

The Internet

• Try on your computer (Mac or Linux):
– ifconfig
– Note “inet”

• Try on your computer (Windows):
– ipconfig
– Note “IPv4 address”

• Note: 127.0.0.1 is IP address of “the local
host”

• Useful for testing networking apps

62

The Internet
• Problem: Difficult for humans to

remember/use “dotted decimal” IP
addresses

• Solution: Domain names
• Domain name: A symbolic name for IP

address(es)
– Example: cs.princeton.edu
– Example: time-a.nist.gov
– Example: localhost

63

The Internet

• Problem: How to map domain name to IP
address(es)?

• Early Solution: hosts.txt file at SRI
International
– Downloaded ~weekly
– Didn’t scale

• Current Solution: Domain Name
System

64

The Domain Name SystemThe Internet

• Domain name system (DNS)
– The “phone book” of the Internet
– Maps domain names to their IP addresses
– Distributed hierarchical database

65

Your
Computer

DNS
Resolver

References
cs.princeton.edu

What is
cs.princeton.edu?

The Internet

66

The Domain Name System

Your
Computer

DNS
Resolver

Root
Name Server

What is
cs.princeton.edu?

Try xxx.xx.xxx.x
(Addr of edu
name server)

References
cs.princeton.edu

What is
cs.princeton.edu?

The Internet

67

The Domain Name System

Your
Computer

DNS
Resolver

edu
Name Server

What is
cs.princeton.edu?

Try xxx.xx.xxx.x
(Addr of princeton.edu
name server)

References
cs.princeton.edu

What is
cs.princeton.edu?

The Internet

68

The Domain Name System

Your
Computer

DNS
Resolver

princeton.edu
Name Server

What is
cs.princeton.edu?

References
cs.princeton.edu

What is
cs.princeton.edu?

The Internet

69

It’s
128.112.136.61

The Domain Name System

Your
Computer

DNS
Resolver

References
cs.princeton.edu

It’s
128.112.136.61

The Internet

70

The Domain Name System

DNS root servers:

Many hundreds; over 130 physical locations

The Internet

71

The Internet

• Question: How can DNS root servers
handle the heavy workload?

• Answer: Caching at each level of the
DNS hierarchy

• In reality, root servers handle mostly silly
requests

72

The Internet

• Try (on Linux, Mac, Windows):
– nslookup cs.princeton.edu
– nslookup time-a.nist.gov
– nslookup nonexistingdomainname

73

The Internet

• See ipaddress.py
– python ipaddress.py
cs.princeton.edu

– python ipaddress.py
time-a.nist.gov

– python ipaddress.py localhost
– python ipaddress.py
nonexistingdomainname

74

IP …
TCP UDP …

HTTP, HTTPS,
SMTP, POP3, IMAP,
FTP, SFTP
telnet, SSH,
daytime, echo,
DNS, …

…

Dominant protocols
• UDP (User Datagram Protocol)
• TCP (Transmission Control Protocol)

The Internet

75

Internet Layer
Transport Layer

Application Layer

The Internet Protocol Stack

The Internet
• UDP characteristics

– Connections are not persistent
– Connections are unreliable
– Adds port number to IP protocol

• Why UDP?
– Fast
– Not all applications need reliable transmission

• E.g. streaming audio
• E.g. DNS

• We will not use UDP in COS 333

76

The Internet

• TCP characteristics
– Connections are persistent

• “Virtual circuit”
– Connections are reliable

• Reassembles packets in proper order
• Requests resend of missing/corrupted packets

– “Ordered reliable byte stream”
• Recall file descriptors

• Most Internet apps use TCP
• We will use TCP in COS 333

77

The Internet

• Header
– Source port
– Destination port
– …

78

The Internet
• Port

– A software abstraction
– 16-bit integer
– Identifies unique process on specified host

• Client and server communicate via ports
– Known port on server
– Ephemeral port on client

• Ports allow comm between specific
processes on specific hosts (as opposed to
comm between hosts)

79

The Internet

• Port numbers
– 0-1023: Well-Known Server Ports

• Used by common servers (HTTP, FTP, etc.)
– 1024-49151: Registered Server Ports

• Registered by software vendors to reduce
likelihood of conflicts

– 49152-65535: Dynamic/Private Ports
• Available for any purpose

80

Port Kind of Process
7 echo
13 daytime
20 FTP-control
21 FTP-data
22 SSH, SFTP
23 telnet
25 SMTP
53 DNS
80 HTTP
110 POP2
143 IMAP
443 HTTPS

Port Kind of Process
3306 MySQL
5432 PostgreSQL
6379 Redis
8080 Apache Tomcat
27017 MongoDB

Some Well-Known Server Ports

Some Registered
Server Ports

The Internet

81

IP …
TCP UDP …

HTTP, HTTPS,
SMTP, POP3, IMAP,
FTP, SFTP
telnet, SSH,
daytime, echo,
DNS, …

…

Many protocols, each with its own
header/payload format…

The Internet

82

Internet Layer
Transport Layer

Application Layer

The Internet Protocol Stack

Protocol Internet
Application

daytime Time of Day
echo Echo
HTTP (Hypertext Transfer Protocol)
HTTPS (Hypertext Transfer Protocol Secure)

World Wide Web

SMTP (Simple Mail Transfer Protocol)
POP3 (Post Office Protocol 3)
IMAP (Internet Message Address Protocol)

E-Mail

FTP (File Transfer Protocol)
SFTP (Secure File Transfer Protocol)

File Transfer

Telnet
SSH (Secure Shell)

Remote Shell

DNS (Domain Name System) DNS

Some application layer protocols:

The Internet

83

IP

LAN
Interface 1

LAN
Interface 2

LAN
Interface 3

TCP UDP

HTTP SMTP DNS

Provide platform for
Internet app development

Provides independence
from LAN technologies

The Internet

84

…

The Internet Protocol Hourglass

