SQLAIchemy

Copyright © 2026 by
Robert M. Dondero, Ph.D.
Princeton University

Objectives

. The lecture will:
- Provide a taste of the SQLAIchemy
object-relational mapper

- Give you enough information about
SQLAIchemy to:

- Help you decide if you want to use it in your project
- Help you get started with it

Motivation

. Problem:

- There is an impedence mismatch between
the relational data model and the OOP data
model

- Awkward to map the relational data model (tables,
rows, fields/columns) to the OOP data model
(classes, objects, fields)

Motivation

. Solution 1: Cursors
- As we've seen...
- Cursor = array + indication of current element

- DB driver maps each DB table to an array
- Each element represents a row
- Cursor keeps track of current row

- DB driver maps each DB row to an array
- Each element represents a field

Motivation

. Solution 2: Object-relational mapper
(ORM)
- ORM maps each DB table to a class

- E.g., books table => class Book
- ORM maps each DB row to an object
- E.g., row of books table => object of class Book

- ORM maps each DB field to an object field

- E.g. isbn field of some row of books table => isbn
field of some object of class Book

Motivation

. Solution 2: Object-relational mapper

(ORM) (cont.)

- OO0 pgm fetches/stores data by sending
messages to (calling methods of) objects, not
by executing SQL statements directly

Motivation

. Some popular ORMs:
- See

https://en.wikipedia.org/wiki/List_of object-rel
ational_mapping_software

- For Python the most popular is...

https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software

Motivation

. SQLAIchemy
- Who: Michael Bayer
- When: 2006

- Why: ORM for
Python

Installing SQLAIchemy

. Linux, Mac, and MS Windows

- At a bash shell or Command prompt:
- Activate your cos333 virtual environment
- python —m pip 1nstall SQLAlchemy

SQLAIchemy Pgmming in Python

. See SQLAIchemy/database.py

- Informs SQLAIchemy of database schema
- Names of tables
- Names & data types of fields
- Note:

— Unusual use of class-level (static) fields
— For each table, must specify primary key
— For each table, may specify foreign keys

10

SQLAIchemy Pgmming in Python

To run the following programs:

Mac & Linux:

S export DATABASE URL=sqlite:///bookstore.sqlite
S python create.py
S python display.py

MS Windows

S set DATABASE URL=sqlite:///bookstore.sqlite
$ python create.py
S python display.py

SQLAIchemy Pgmming in Python

Debugging trick:

engine = sqlalchemy.create engine (DATABASE URL)

!

engine = sqlalchemy.create engine (DATABASE URL,
echo=True)

Commands SQLAIchemy to write to stdout each SQL statement
that it issues

SQLAIchemy Pgmming in Python

. See SQLAIchemy/create.py

- To create DB
- Create engine
. Create session
. Create all tables
- Create books, add to session, commit session
- Same for authors, customers, zipcodes, orders

13

SQLAIchemy Pgmming in Python

. See SQLAIchemy/display.py
- To display DB
- Create engine
- Create session
. Send query () message to session
- Specify table
- Send all () message to result
— Alternative: send one () message to result

14

SQLAIchemy Pgmming in Python

. See SQLAIchemy/authorsearch.py
- To query DB

- Create engine

- Create session

. Send query () message to session
- Send filter () message to result

- Send all () or one () message to result

15

SQLAIchemy Pgmming in Python

. See SQLAIchemy/order.py
- To update DB

- Same as query, and then...

- Update object fields
-~ SQLAIchemy marks changed objects as “dirty”

- Send commit () message to session
— SQLAIchemy writes dirty objects to DB

16

SQLAIchemy Pgmming in Python

. See SQLAIchemy/purchase.py

- SQLAIchemy supports transactions

- Can send commit () or rollback () message to
session

17

SQLAIchemy Pgmming in Python

. See SQLAIchemy/recovery.py
- Transactions work!

18

SQLAIchemy Bonus

. SQLAIchemy is relational database
independent

- Same code works for SQLite, Postgresq|,
MySQL, MariaDB, Oracle, MS-SQL

19

SQLAIchemy Bonus

. SQLAIchemy does connection pooling

- Pattern:

- Create one engine for app
— Maintains pool of open connections
— Pool is shared across multiple threads
- As needed:
— Ask engine for Session
» Engine returns pooled Session
— Use Session
— Close Session
» Pools (does not close) the Session

- Minimizes creation of DB connections
- Described later in the course

20

SQLAIchemy Assessment

. SQLAIchemy assessment
- (pro) Eliminates impedence mismatch
- (pro) Efficient
- (pro) Insulates programmer from SQL

- (con) Insulates programmer from SQL!
.- Bad if your intention is to learn SQL

21

SQLAIchemy Assessment

. Assignments
- You may not use SQLAIchemy
. Project

- If you use Python and a relational DB, then
you probably should use SQLAIchemy

22

Lecture Summary

. The lecture:

- Provided a taste of the SQLAIchemy
object-relational mapper

- Gave you enough information about
SQLAIchemy to:

- Help you decide if you want to use it in your project
- Help you get started with it

. See also:

- Appendix: Examples of SQL Statements and
SQLAIchemy Code

23

More Information

. There is much more to SQLAIchemy
- Automatic management of related tables

 The COS 333 Lectures web page provides
references to supplementary information

Appendix: Examples of SQL
Statements and SQLAIchemy
Code

25

SQL & SQLAIchemy

SELECT * from books;

query = session.query (database.Book)
table = query.all()
for row in table:
print (row.isbn, row.title, row.quantity)

26

SQL & SQLAIchemy

SELECT isbn, title FROM books;

query = session.query (
database.Book.isbn,
database.Book.title)

table = query.all()

for row in table:
print (row.isbn, row.title)

27

SQL & SQLAIchemy

SELECT * FROM books
ORDER BY quantity DESC;

query = (session.query (database.Book)

.order by (database.Book.quantity.desc()))
table = query.all()
for row in table:

print (row.isbn, row.title, row.quantity)

28

SQL & SQLAIchemy

SELECT * FROM books
WHERE quantity=650;

query = (session.query (database.Book)
.filter (database.Book.quantity == 650))
table = query.all()
for row in table:
print (row.isbn, row.title, row.quantity)

29

SQL & SQLAIchemy

SELECT * FROM orders
WHERE isbn=123 AND custid=222;

query = (session.query (database.Order)
.filter (database.Order.isbn == 123)
.filter (database.Order.custid == 222))

table = query.all()

for row in table:
print (row.custid, row.isbn, row.quantity)

30

SQL & SQLAIchemy

SELECT * FROM books, authors
WHERE books.isbn=authors.isbn;

query = (session.query (
database.Book,
database.Author)
.filter (database.Book.isbn ==
database.Author.isbn))
table = query.all()
for b, a in table:
print(b.isbn, b.title,
b.quantity, a.isbn, a.author)

31

SQL & SQLAIchemy

SELECT custname, title, orders.quantity
FROM books, customers, orders
WHERE books.isbn=orders.isbn
AND orders.custid=customers.custid;

query = (session.query (
database.Customer.custname,
database.Book.title,
database.Order.quantity)
.filter (database.Book.isbn ==
database.Order.isbn)
.filter (database.Order.custid ==
database.Customer.custid))
table = query.all()
for row in table:
print (row.custname, row.title, row.quantity)

32

SQL & SQLAIchemy

Case insensitive LIKE:

SELECT * FROM books
WHERE title LIKE 'The%';

query = (session.query (database.Book)

.filter (database.Book.title.ilike('The%"')))
table = query.all()
for row in table:

print (row.isbn, row.title, row.quantity)

33

SQL & SQLAIchemy

Case sensitive LIKE:

SELECT * FROM books
WHERE title LIKE 'The%';

query = (session.query (database.Book)

.filter (database.Book.title.like('The%"')))
table = query.all()
for row in table:

print (row.isbn, row.title, row.quantity)

34

SQL & SQLAIchemy

SELECT * FROM books
WHERE title LIKE 'The\%' ESCAPE '\';

query = (session.query (database.Book)
.filter (database.Book.title.ilike (
'"The\%', escape='\\")))
table = query.all()
for row in table:
print (row.isbn, row.title, row.quantity)

35

SQL & SQLAIchemy

UPDATE books SET quantity=60
WHERE isbn=123;

query = (session.query (database.Book)
.filter (database.Book.isbn == 123))
table = query.all()
for row in table:
row.quantity = 60
session.commit ()

36

SQL & SQLAIchemy

INSERT INTO books (isbn, title, quantity)
VALUES ('456', 'Core Java', 120);

new book = database.Book(
isbn='456",
title='Core Java',
quantity='120")

session.add (new book)

session.commit ()

SQL & SQLAIchemy

DELETE FROM books WHERE isbn=456;

query = (session.query (database.Book)
.filter (database.Book.isbn == 456))
table = query.all()
for row in table:
session.delete (row)
session.commit ()

