
SQLAlchemy

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• The lecture will:
– Provide a taste of the SQLAlchemy

object-relational mapper
– Give you enough information about

SQLAlchemy to:
• Help you decide if you want to use it in your project
• Help you get started with it

2

Motivation

• Problem:
– There is an impedence mismatch between

the relational data model and the OOP data
model

• Awkward to map the relational data model (tables,
rows, fields/columns) to the OOP data model
(classes, objects, fields)

3

Motivation

• Solution 1: Cursors
– As we’ve seen…

• Cursor = array + indication of current element
– DB driver maps each DB table to an array

• Each element represents a row
• Cursor keeps track of current row

– DB driver maps each DB row to an array
• Each element represents a field

4

Motivation

• Solution 2: Object-relational mapper
(ORM)
– ORM maps each DB table to a class

• E.g., books table => class Book
– ORM maps each DB row to an object

• E.g., row of books table => object of class Book
– ORM maps each DB field to an object field

• E.g. isbn field of some row of books table => isbn
field of some object of class Book

5

Motivation

• Solution 2: Object-relational mapper
(ORM) (cont.)
– OO pgm fetches/stores data by sending

messages to (calling methods of) objects, not
by executing SQL statements directly

6

Motivation

• Some popular ORMs:
– See

https://en.wikipedia.org/wiki/List_of_object-rel
ational_mapping_software

– For Python the most popular is…

7

https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software
https://en.wikipedia.org/wiki/List_of_object-relational_mapping_software

Motivation

• SQLAlchemy
– Who: Michael Bayer
– When: 2006
– Why: ORM for

Python

8

Installing SQLAlchemy

• Linux, Mac, and MS Windows
– At a bash shell or Command prompt:

• Activate your cos333 virtual environment
• python –m pip install SQLAlchemy

9

SQLAlchemy Pgmming in Python

• See SQLAlchemy/database.py
– Informs SQLAlchemy of database schema

• Names of tables
• Names & data types of fields
• Note:

– Unusual use of class-level (static) fields
– For each table, must specify primary key
– For each table, may specify foreign keys

10

SQLAlchemy Pgmming in Python

11

$ export DATABASE_URL=sqlite:///bookstore.sqlite
$ python create.py
$ python display.py
…

Mac & Linux:

To run the following programs:

$ set DATABASE_URL=sqlite:///bookstore.sqlite
$ python create.py
$ python display.py
…

MS Windows

SQLAlchemy Pgmming in Python

12

engine = sqlalchemy.create_engine(DATABASE_URL)

Debugging trick:

engine = sqlalchemy.create_engine(DATABASE_URL,
 echo=True)

Commands SQLAlchemy to write to stdout each SQL statement
that it issues

SQLAlchemy Pgmming in Python

• See SQLAlchemy/create.py
– To create DB

• Create engine
• Create session
• Create all tables
• Create books, add to session, commit session
• Same for authors, customers, zipcodes, orders

13

SQLAlchemy Pgmming in Python

• See SQLAlchemy/display.py
– To display DB

• Create engine
• Create session
• Send query() message to session

– Specify table
• Send all() message to result

– Alternative: send one() message to result

14

SQLAlchemy Pgmming in Python

• See SQLAlchemy/authorsearch.py
– To query DB

• Create engine
• Create session
• Send query() message to session
• Send filter() message to result
• …
• Send all() or one() message to result

15

SQLAlchemy Pgmming in Python

• See SQLAlchemy/order.py
– To update DB

• Same as query, and then…
• Update object fields

– SQLAlchemy marks changed objects as “dirty”
• Send commit() message to session

– SQLAlchemy writes dirty objects to DB

16

SQLAlchemy Pgmming in Python

• See SQLAlchemy/purchase.py
– SQLAlchemy supports transactions

• Can send commit() or rollback() message to
session

17

SQLAlchemy Pgmming in Python

• See SQLAlchemy/recovery.py
– Transactions work!

18

SQLAlchemy Bonus

• SQLAlchemy is relational database
independent
– Same code works for SQLite, Postgresql,

MySQL, MariaDB, Oracle, MS-SQL

19

SQLAlchemy Bonus
• SQLAlchemy does connection pooling

– Pattern:
• Create one engine for app

– Maintains pool of open connections
– Pool is shared across multiple threads

• As needed:
– Ask engine for Session

» Engine returns pooled Session
– Use Session
– Close Session

» Pools (does not close) the Session
– Minimizes creation of DB connections
– Described later in the course

20

SQLAlchemy Assessment

• SQLAlchemy assessment
– (pro) Eliminates impedence mismatch
– (pro) Efficient
– (pro) Insulates programmer from SQL
– (con) Insulates programmer from SQL!

• Bad if your intention is to learn SQL

21

SQLAlchemy Assessment

• Assignments
– You may not use SQLAlchemy

• Project
– If you use Python and a relational DB, then

you probably should use SQLAlchemy

22

Lecture Summary

• The lecture:
– Provided a taste of the SQLAlchemy

object-relational mapper
– Gave you enough information about

SQLAlchemy to:
• Help you decide if you want to use it in your project
• Help you get started with it

• See also:
– Appendix: Examples of SQL Statements and

SQLAlchemy Code

23

More Information

• There is much more to SQLAlchemy
– Automatic management of related tables
– …

• The COS 333 Lectures web page provides
references to supplementary information

Appendix: Examples of SQL
Statements and SQLAlchemy

Code

25

SQL & SQLAlchemy

26

SELECT * from books;

query = session.query(database.Book)
table = query.all()
for row in table:
 print(row.isbn, row.title, row.quantity)

SQL & SQLAlchemy

27

SELECT isbn, title FROM books;

query = session.query(
 database.Book.isbn,
 database.Book.title)
table = query.all()
for row in table:
 print(row.isbn, row.title)

SQL & SQLAlchemy

28

SELECT * FROM books
 ORDER BY quantity DESC;

query = (session.query(database.Book)
 .order_by(database.Book.quantity.desc()))
table = query.all()
for row in table:
 print(row.isbn, row.title, row.quantity)

SQL & SQLAlchemy

29

SELECT * FROM books
 WHERE quantity=650;

query = (session.query(database.Book)
 .filter(database.Book.quantity == 650))
table = query.all()
for row in table:
 print(row.isbn, row.title, row.quantity)

SQL & SQLAlchemy

30

SELECT * FROM orders
 WHERE isbn=123 AND custid=222;

query = (session.query(database.Order)
 .filter(database.Order.isbn == 123)
 .filter(database.Order.custid == 222))
table = query.all()
for row in table:
 print(row.custid, row.isbn, row.quantity)

SQL & SQLAlchemy

31

SELECT * FROM books, authors
 WHERE books.isbn=authors.isbn;

query = (session.query(
 database.Book,
 database.Author)
 .filter(database.Book.isbn ==
 database.Author.isbn))
table = query.all()
for b, a in table:
 print(b.isbn, b.title,
 b.quantity, a.isbn, a.author)

SQL & SQLAlchemy

32

SELECT custname, title, orders.quantity
 FROM books, customers, orders
 WHERE books.isbn=orders.isbn
 AND orders.custid=customers.custid;

query = (session.query(
 database.Customer.custname,
 database.Book.title,
 database.Order.quantity)
 .filter(database.Book.isbn ==
 database.Order.isbn)
 .filter(database.Order.custid ==
 database.Customer.custid))
table = query.all()
for row in table:
 print(row.custname, row.title, row.quantity)

SQL & SQLAlchemy

33

SELECT * FROM books
 WHERE title LIKE 'The%';

query = (session.query(database.Book)
 .filter(database.Book.title.ilike('The%')))
table = query.all()
for row in table:
 print(row.isbn, row.title, row.quantity)

Case insensitive LIKE:

SQL & SQLAlchemy

34

SELECT * FROM books
 WHERE title LIKE 'The%';

query = (session.query(database.Book)
 .filter(database.Book.title.like('The%')))
table = query.all()
for row in table:
 print(row.isbn, row.title, row.quantity)

Case sensitive LIKE:

SQL & SQLAlchemy

35

SELECT * FROM books
 WHERE title LIKE 'The\%' ESCAPE '\';

query = (session.query(database.Book)
 .filter(database.Book.title.ilike(
 'The\%', escape='\\')))
table = query.all()
for row in table:
 print(row.isbn, row.title, row.quantity)

SQL & SQLAlchemy

36

UPDATE books SET quantity=60
 WHERE isbn=123;

query = (session.query(database.Book)
 .filter(database.Book.isbn == 123))
table = query.all()
for row in table:
 row.quantity = 60
session.commit()

SQL & SQLAlchemy

37

INSERT INTO books (isbn, title, quantity)
 VALUES ('456', 'Core Java', 120);

new_book = database.Book(
 isbn='456',
 title='Core Java',
 quantity='120')
session.add(new_book)
session.commit()

SQL & SQLAlchemy

38

DELETE FROM books WHERE isbn=456;

query = (session.query(database.Book)
 .filter(database.Book.isbn == 456))
table = query.all()
for row in table:
 session.delete(row)
session.commit()

