Database Programming
(Part 3)

Copyright © 2026 by

Robert M. Dondero, Ph.D.
Princeton University

Objectives

. We will cover:

Databases (DBs) and database
management systems (DBMSs)...

With a focus on relational DBs and
DBMSs...

With a focus on the SQLite DBMS...
With a focus on programming with SQL.ite

Agenda

. Relational DB transactions: atomicity
. Relational DB transactions: locking
. Relational DB design

DB Transactions: Atom

Icity

Customer 222 purchased 1 copy of book 123

Time

UPDATE orders SET quantity=quantity+1l
WHERE isbn=123 AND custid=222;

UPDATE books SET quantity=quantity-1

Y WHERE isbn=123;

HW/SW failure

DB Transactions: Atomicity

Preserve consistency with
HW/SW failures

l Requires
Atomicity
l Implemented by

Transactions

DB Transactions: Atomicity

BEGIN
UPDATE ..
ADD ..
DELETE ..

COMMIT

BEGIN
UPDATE ..
ADD ..
DELETE ..

ROLLBACK

DBMS starts a transaction

DBMS stages changes in memory

DBMS writes the staged changes
to the DB and ends the transaction

DBMS starts a transaction

DBMS stages changes in memory

DBMS discards the staged
changes and ends the transaction

DB Transactions: Atomicity

. See purchase.py

$ python display.py

('123'", 'The Practice of Programming', 500)

('123', '222', 20)

$ python purchase.py 123 222
Transaction committed.

$ python display.py

('123'", 'The Practice of Programming', 499)

('123', '222', 21)

S

Aside: Isolation Level

connect (DATABASE URL,
isolation level=None, uri=True

“You can disable the sqlite3 module’s
implicit transaction management by
setting isolation_level to None. This will
leave the underlying sqlite3 library
operating in autocommit mode. You can
then completely control the transaction
state by explicitly issuing BEGIN,
ROLLBACK, SAVEPOINT, and RELEASE
statements in your code.”

https://docs.python.org/3/library/sqlite3.html

DB Transactions: Atomicity

. See recovery.py

$ python display.py

('123'", 'The Practice of Programming', 500)

DB Transactions: Atomicity

. See recovery.py (cont.)

S python recovery.py
Transaction 0 committed.
Transaction 1 committed.

Transaction 2 committed.
Transaction 3 committed.
Transaction 4 committed.
Transaction 5 committed.
Transaction 6 committed.
Transaction 7 committed.
Simulated failure with 1 = 8

$

DB Transactions: Atomicity

. See recovery.py (cont.)

$ python display.py

('123'", 'The Practice of Programming’, 492)

Agenda

. Relational DB transactions: atomicity
.- Relational DB transactions: locking
. Relational DB design

12

Time

Without locking:

DB Transactions: Locking

Process P1

Process P2

BEGIN
Increment ORDERS (21)

Decrement BOOKS (499)

COMMIT

BEGIN

Increment ORDERS (21)

Decrement BOOKS (499)

COMMIT

13

DB Transactions: Locking

Preserve consistency with
concurrent updates

l Requires

Locking
l Implemented by

Transactions

14

DB Transactions: Locking

Transaction locking in SQLite

After P1 does this on

some DB

P2 can do this on that
DB

BEGIN

SELECT
UPDATE | ADD | DELETE

COMMIT | ROLLBACK

BEGIN

SELECT
UPDATE | ADD | DELETE
COMMIT | ROLLBACK

BEGIN
SELECT
COMMIT | ROLLBACK

BEGIN

SELECT
UPDATE | ADD | DELETE
COMMIT | ROLLBACK

15

DB Transactions: Locking

With locking:
Process P1 Process P2

BEGIN

BEGIN
Time Increment ORDERS (21)

Decrement BOOKS (499) Updates disallowed

COMMIT
Increment ORDERS (22)
Decrement BOOKS (498)
COMMIT

\j

Process P2 updates are postponed or rejected 16

DB Transactions: Locking

DBMS Locking Level

PostgreSQL row
Oracle row
SQLServer row
MySQL row
SQLite database

DB Transactions: Locking

Terminal session 1:

$ sqglite3 bookstore.sqglite
sglite> BEGIN;

sglite> UPDATE books SET quantity = 11111 WHERE isbn = 123;
sglite>

Terminal session 2:

$ python purchase.py 123 222
purchase.py: databa®™—ts—lacked _
S — Noticeable delay

18

DB Transactions: Locking

Terminal session 1 (cont):

$ sglite3 bookstore.sglite

sglite> BEGIN;

sgqlite> UPDATE books SET quantity = 11111 WHERE isbn = 123;
sglite> COMMIT;

sglite>

Terminal session 2 (cont):

S python purchase.py 123 222
database 1s locked

$ python purchase.py 123 222
Transaction committed.

S

19

Transaction Summary

. DBMSs use transactions to:

- Recover from HW/SW errors
- Transactions implement atomicity

- Handle concurrent updates
- Transactions implement locking

20

Agenda

. Relational DB transactions: atomicity
. Relational DB transactions: locking
. Relational DB design

21

Relational DB Design

. Relational DB normal forms

— https://lwww.geeksforgeeks.org/dbms/normal-forms-i
n-doms/

- https://en.wikipedia.org/wiki/Database normalization

22

https://www.geeksforgeeks.org/dbms/normal-forms-in-dbms/
https://www.geeksforgeeks.org/dbms/normal-forms-in-dbms/
https://en.wikipedia.org/wiki/Database_normalization

Relational DB Design

. Preliminary:
- The rows within each table of a relational
database must be unique

- That s, a table cannot contain duplicate rows

23

Relational DB Design

. Somewhat informally...

. Def: Atable is in first normal form iff no

cell of a table is a table

- All modern relational DBMSs enforce first
normal form

24

Relational DB Design: DB3
DB1.

BOOKS

isbn author title quantity
123 Kernighan The Practice of Programming 500

123 Pike The Practice of Programming 500

234 Kernighan The C Programming Language 800
234 Ritchie The C Programming Language 800

345 Sedgewick Algorithms in C 650
ORDERS

isbn custid quantity

123 222 20

345 222 100

123 111 30

CUSTOMERS

custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

Relational DB Design: DB3

DB1:

BOOKS
isbn
12

autho 2
Kernighan The Practice of Programming

quantity
500

12 Pike The Practice of Programming 500

234 Kernighc SemRemeremmemprererra o uage 800

234 Ritchie The C Programming Language 800

345 Sedgewick Algorithms in C 650
ORDERS

isbn custid quantity

tes 22z 20 Design of DB1 seems wrong
345 222 100

123 111 30

CUSTOMERS

custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

26

Relational DB Design: DB1

. Somewhat informally...

. Def. The primary key for a table is the
minimal set of columns that uniquely
identifies any particular row of that table

27

Relational DB Design: DB3
DB1.

BOOKS

isbn author title quantity
123 Kernighan The Practice of Programming 500

123 Pike The Practice of Programming 500

234 Kernighan The C Programming Language 800
234 Ritchie The C Programming Language 800
345 Sedgewick Algorithms in C 650

ORDERS

isbn custid quantity
123 222 20

345 222 100

123 111 30

CUSTOMERS

custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138

333 MIT 292 Main St Cambridge MA 02142

Relational DB Design: DB1

. Def: A column C2 of a table is

(functionally) dependent on a column C1
iff, for each row in the table, the value of
C1 determines the value of C2

. In DB1...

29

Relational DB Design: DB1

Dependencies in DB1:

BOOKS title
—
quantity
CUSTOMERS
ORDERS custname
. street city
quantity m
zipcode — state

Relational DB Design: DB1

. Somewhat informally...

. Atable is in second normal form iff:
_ ltis in first normal form, and

- Every non-primary-key column is dependent
on the entire primary key

31

Relational DB Design: DB1

Dependencies in DB1:

BOOKS title
=]
quantity
CUSTOMERS
ORDERS custname
. /street city
quantity | ||| custid N
Zipcode 1 state
32

DB1 is not in second normal form

Relational DB Design: DB2
DB2:

BOOKS AUTHORS

isbn title quantity isbn author

123 The Practice of Programming 500 123 Kernighan

234 The C Programming Language 800 123 Pike

345 Algorithms in C 650 234 Kernighan
234 Ritchie

345 Sedgewick

ORDERS

isbn custid quantity
123 222 20
345 222 100
123 111 30

CUSTOMERS

custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138

333 MIT 292 Main St Cambridge MA 02142

Relational DB Design: DB2

Dependencies in DB2:

BOOKS

title

uantity

ORDERS

guantity

AUTHORS
CUSTOMERS
custname
m street city
zipcode —— state
34

DB2 is in second normal form

Relational DB Design: DB2
DB2:

BOOKS AUTHORS

isbn title quantity isbn author

123 The Practice of Programming 500 123 Kernighan

234 The C Programming Language 800 123 Pike

345 Algorithms in C 650 234 Kernighan
234 Ritchie

ORDERS 345 Sedgewick

isbn custid quantity

123 222 20 .
SOE 959 60 Design of DB2 seems wrong

123 111 30

CUSTOMERS
custid custname street citvy ipcode

111 Princeton 114 Nassau St rinceton NJ 08540
222 Harvard 1256 Mass Ave Cam o 02138

333 MIT 292 Main St Cambridge MA 02142

Relational DB Design: DB2

. Somewhat informally...

. Atable is in third normal form iff:
_ ltis in second normal form, and

- Every non-primary-key column is
(non-transitively) directly dependent on the
entire primary key

36

Relational DB Design: DB2

Dependencies in DB2:

BOOKS e AUTHORS
ORDERS CUSTOMERS
custname

quantity
m street city
zipcode state

DB2 is not in third normal form 37

Relational DB Design: DB3
DB3.

AUTHORS

isbn author
123 Kernighan
123 Pike

234 Kernighan
234 Ritchie

BOOKS

isbn title quantity
123 The Practice of Programming 500

234 The C Programming Language 800

345 Algorithms in C 650
ORDERS

isbn custid quantity
123 222 20
345 222 100
123 111 30

345 Sedgewick

CUSTOMERS

custid custname street zipcode
111 Princeton 114 Nassau St 08540
222 Harvard 1256 Mass Ave (02138
333 MIT 292 Main St 02142

ZIPCODES

zipcode city state
08540 Princeton NJ
02138 Cambridge MA
02142 Cambridge MA

38

Relational DB Design: DB3

Dependenciesin DB3:

BOOKS

title

AUTHORS

CUSTOMERS

custname

] s

Zipcode

DB3 is in third normal form

ORDERS

guantity

ZIPCODES

state

39

Relational DB Design: Summary
Codd’s 1971 Paper

Unnormalized form
Eliminate domains which have
relations as elements

First normal form

Eliminate non-full dependence of
non-prime attributes on candidate keys

Second normal form

Eliminate transitive dependence of
non-prime attributes on candidate keys

Third normal form
40

Relational DB Design

. Some additional points:

- Database designers routinely violate normal
forms

- There is a substantial mathematical theory of
relational database design

41

Lecture Summary

. In this lecture we covered:

Re
Re

Re

ationa
ationa
ationa

DB transactions: atomicity
DB transactions: locking
DB design

42

Lecture Series Summary

. In this lecture series we covered:

- Databases (DBs) and database
management systems (DBMSs)...

- With a focus on relational DBs and
DBMSs...

- With a focus on the SQLite DBMS...

- With a focus on programming with SQL.ite

. See also...

43

See Also

. Appendices
- Appendix 1: Before relational DBs
- Appendix 2: After relational DBs
. Optional lecture slide decks
- PostgreSQL
- SQLAIchemy

44

More Information

. The COS 333 Lectures web page
provides references to supplementary
information

45

Appendix 1:
Before Relational DBs

46

Before Relational DBs

. Before relational DBs, there were...

. Navigational DBs
- Data are linked into graph structure

47

Before Relational DBs

Example
Navigational DB

root

*

BOOK isbn title quantity
/\
ORDER custid quantity author

1

C U STO M E R custname st;:eet zipcode

1

ZlPCODE city state

AUTHOR

48

Before Relational DBs

Which customers purchased the book whose ISBN is 1237

root

BOOK 123 | The Practice of Programming | 500

(isbn, title, quantity) A

ORDER 222 | 20 111 | 30
(custid, quantity) / /
CUSTOMER Pr?/nceton | 114 Nassau St | 08540
(custname, street, /

zipcode) Harvard | 1256 Mass Ave | 02138

49

Before Relational DBs

. Navigational DBs
- Queries are biased
- DB designer must anticipate queries

. Relational DBs

- Queries are unbiased
- DB designer need not anticipate queries
- However, DB designer can create indices

50

Appendix 2:
After Relational DBs

51

After Relational DBs

. For some apps:

- Relational DBMSs are more complex than
necessary

- The relational DB model is a poor fit

52

After Relational DBs

Data Model

/\

Relational

Non-Relational

(NoSQL)
Key-Value Document Wide-Column
Stores Stores Stores

53

After Relational DBs

Data Model

/\

Relational

Non-Relational

(NoSQL)
Key-Value Document Wide-Column
Stores Stores Stores

54

After Relational DBs

. Key-value store

Values: arbitrary bytes
Data structure: key-value pairs
Access: by key

Examples: Redis, Memcached, Microsoft
Azure Cosmos DB, Hazelcast, Ehcache

99

After Relational DBs

Data Model

/\

Relational

Non-Relational
(NoSQL)

Key-Value Docume
Stores Stores

Wide-Column
Stores

D

56

After Relational DBs

. Document store

Values: documents with internal structure
(e.g., JSON)

Data structure: key-value pairs
Access: by key or content

Examples: MongoDB, Amazon DynamoDB,

Couchbase, CouchDB, MarkLogic

57

After Relational DBs

Data Model

/\

Relational

Non-Relational

(NoSQL)
Key-Value Document
Stores Stores

Wide-Column
Stores

58

After Relational DBs

. Wide-column store
- Values: Arbitrary bytes

- Data structure: Multidimensional associative
array

- Examples: Cassandra, HBase, Microsoft
Azure Cosmos DB

59

https://db-engines.com/en/ranking as of Sept 2025:

After Relational DBs

Popular DBMSs, according to

Rank DBMS DB Data Model Score
1 Oracle Relational 1171
2 MySQL Relational 892

3 Microsoft SQL Server | Relational 717

4 PostgreSQL Relational 657

5 MongoDB Document Store 381

6 Snowflake Relational 190

7 Redis Key-Value Store 145
11 SQLite Relational 108

60

https://db-engines.com/en/ranking

