
Database Programming
(Part 3)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Databases (DBs) and database

management systems (DBMSs)…
– With a focus on relational DBs and

DBMSs…
– With a focus on the SQLite DBMS…
– With a focus on programming with SQLite

2

Agenda

• Relational DB transactions: atomicity
• Relational DB transactions: locking
• Relational DB design

3

UPDATE orders SET quantity=quantity+1
WHERE isbn=123 AND custid=222;

Time HW/SW failure

DB Transactions: Atomicity

4

UPDATE books SET quantity=quantity-1
WHERE isbn=123;

Customer 222 purchased 1 copy of book 123

DB Transactions: Atomicity

5

Preserve consistency with
HW/SW failures

Atomicity

Transactions

Requires

Implemented by

DB Transactions: Atomicity

6

BEGIN
UPDATE …
ADD …
DELETE …
…
COMMIT

DBMS starts a transaction

DBMS stages changes in memory

DBMS writes the staged changes
to the DB and ends the transaction

BEGIN
UPDATE …
ADD …
DELETE …
…
ROLLBACK

DBMS starts a transaction

DBMS stages changes in memory

DBMS discards the staged
changes and ends the transaction

DB Transactions: Atomicity

• See purchase.py

7

$ python display.py

books

('123', 'The Practice of Programming', 500)
…

orders

('123', '222', 20)
…
$ python purchase.py 123 222
Transaction committed.

$ python display.py

books

('123', 'The Practice of Programming', 499)
…

orders

('123', '222', 21)
…
$

Aside: Isolation Level

8

“You can disable the sqlite3 module’s
implicit transaction management by
setting isolation_level to None. This will
leave the underlying sqlite3 library
operating in autocommit mode. You can
then completely control the transaction
state by explicitly issuing BEGIN,
ROLLBACK, SAVEPOINT, and RELEASE
statements in your code.”

connect(DATABASE_URL,
 isolation_level=None, uri=True

https://docs.python.org/3/library/sqlite3.html

DB Transactions: Atomicity

• See recovery.py

9

$ python display.py

books

('123', 'The Practice of Programming', 500)
…

orders

('123', '222', 20)
…
$

DB Transactions: Atomicity

• See recovery.py (cont.)

10

$ python recovery.py
Transaction 0 committed.
Transaction 1 committed.
Transaction 2 committed.
Transaction 3 committed.
Transaction 4 committed.
Transaction 5 committed.
Transaction 6 committed.
Transaction 7 committed.
Simulated failure with i = 8
$

DB Transactions: Atomicity

• See recovery.py (cont.)

11

$ python display.py

books

('123', 'The Practice of Programming’, 492)
…

orders

('123', '222’, 28)
…
$

Agenda

• Relational DB transactions: atomicity
• Relational DB transactions: locking
• Relational DB design

12

Increment ORDERS (21)Time

Process P1 Process P2

BEGIN

Decrement BOOKS (499)

DB Transactions: Locking

13

COMMIT

Increment ORDERS (21)

Without locking:

BEGIN

Decrement BOOKS (499)

COMMIT

DB Transactions: Locking

14

Preserve consistency with
concurrent updates

Locking

Transactions

Requires

Implemented by

DB Transactions: Locking

15

Transaction locking in SQLite

After P1 does this on
some DB

P2 can do this on that
DB

BEGIN BEGIN
SELECT
UPDATE|ADD|DELETE
COMMIT|ROLLBACK

SELECT
UPDATE|ADD|DELETE

BEGIN
SELECT
COMMIT|ROLLBACK

COMMIT|ROLLBACK BEGIN
SELECT
UPDATE|ADD|DELETE
COMMIT|ROLLBACK

Increment ORDERS (21)Time

Process P1 Process P2

BEGIN

Decrement BOOKS (499)

DB Transactions: Locking

16

COMMIT
Increment ORDERS (22)

With locking:

BEGIN

Decrement BOOKS (498)

COMMIT

Updates disallowed

Process P2 updates are postponed or rejected

DB Transactions: Locking

17

DBMS Locking Level

PostgreSQL row

Oracle row

SQLServer row

MySQL row

SQLite database

DB Transactions: Locking

18

$ sqlite3 bookstore.sqlite
sqlite> BEGIN;
sqlite> UPDATE books SET quantity = 11111 WHERE isbn = 123;
sqlite>

$ python purchase.py 123 222
purchase.py: database is locked
$

Terminal session 1:

Terminal session 2:

Noticeable delay

DB Transactions: Locking

19

$ sqlite3 bookstore.sqlite
sqlite> BEGIN;
sqlite> UPDATE books SET quantity = 11111 WHERE isbn = 123;
sqlite> COMMIT;
sqlite>

$ python purchase.py 123 222
database is locked
$ python purchase.py 123 222
Transaction committed.
$

Terminal session 1 (cont):

Terminal session 2 (cont):

Transaction Summary

• DBMSs use transactions to:
– Recover from HW/SW errors

• Transactions implement atomicity
– Handle concurrent updates

• Transactions implement locking

20

Agenda

• Relational DB transactions: atomicity
• Relational DB transactions: locking
• Relational DB design

21

Relational DB Design

• Relational DB normal forms
– https://www.geeksforgeeks.org/dbms/normal-forms-i

n-dbms/
– https://en.wikipedia.org/wiki/Database_normalization

22

https://www.geeksforgeeks.org/dbms/normal-forms-in-dbms/
https://www.geeksforgeeks.org/dbms/normal-forms-in-dbms/
https://en.wikipedia.org/wiki/Database_normalization

Relational DB Design

• Preliminary:
– The rows within each table of a relational

database must be unique
– That is, a table cannot contain duplicate rows

23

Relational DB Design

• Somewhat informally…
• Def: A table is in first normal form iff no

cell of a table is a table
– All modern relational DBMSs enforce first

normal form

24

BOOKS
isbn author title quantity
123 Kernighan The Practice of Programming 500
123 Pike The Practice of Programming 500
234 Kernighan The C Programming Language 800
234 Ritchie The C Programming Language 800
345 Sedgewick Algorithms in C 650

CUSTOMERS
custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30

Relational DB Design: DB3

25

DB1:

BOOKS
isbn author title quantity
123 Kernighan The Practice of Programming 500
123 Pike The Practice of Programming 500
234 Kernighan The C Programming Language 800
234 Ritchie The C Programming Language 800
345 Sedgewick Algorithms in C 650

CUSTOMERS
custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30

Relational DB Design: DB3

26

DB1:

Design of DB1 seems wrong

Relational DB Design: DB1

• Somewhat informally...
• Def: The primary key for a table is the

minimal set of columns that uniquely
identifies any particular row of that table

27

BOOKS
isbn author title quantity
123 Kernighan The Practice of Programming 500
123 Pike The Practice of Programming 500
234 Kernighan The C Programming Language 800
234 Ritchie The C Programming Language 800
345 Sedgewick Algorithms in C 650

CUSTOMERS
custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30

Relational DB Design: DB3

28

DB1:

Relational DB Design: DB1

• Def: A column C2 of a table is
(functionally) dependent on a column C1
iff, for each row in the table, the value of
C1 determines the value of C2

• In DB1...

29

ORDERS

BOOKS

isbn

Relational DB Design: DB1

30

title

quantity

custname

street

zipcode

city

statecustid

isbn

Dependencies in DB1:

author

quantity custid

CUSTOMERS

Relational DB Design: DB1

• Somewhat informally…
• A table is in second normal form iff:

– It is in first normal form, and
– Every non-primary-key column is dependent

on the entire primary key

31

ORDERS

BOOKS

isbn

Relational DB Design: DB1

32

title

quantity

custname

street

zipcode

city

statecustid

isbn

Dependencies in DB1:

author

quantity custid

CUSTOMERS

DB1 is not in second normal form

BOOKS
isbn title quantity
123 The Practice of Programming 500
234 The C Programming Language 800
345 Algorithms in C 650

AUTHORS
isbn author
123 Kernighan
123 Pike
234 Kernighan
234 Ritchie
345 Sedgewick

CUSTOMERS
custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30

Relational DB Design: DB2

33

DB2:

AUTHORS

ORDERS

BOOKS

isbn

Relational DB Design: DB2

34

title

quantity author
isbn

quantity
custname

street

zipcode

city

state

custid

isbn

custid

CUSTOMERS

Dependencies in DB2:

DB2 is in second normal form

CUSTOMERS
custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138
333 MIT 292 Main St Cambridge MA 02142

Relational DB Design: DB2

35

BOOKS
isbn title quantity
123 The Practice of Programming 500
234 The C Programming Language 800
345 Algorithms in C 650

AUTHORS
isbn author
123 Kernighan
123 Pike
234 Kernighan
234 Ritchie
345 SedgewickORDERS

isbn custid quantity
123 222 20
345 222 100
123 111 30

DB2:

Design of DB2 seems wrong

Relational DB Design: DB2

• Somewhat informally...
• A table is in third normal form iff:

– It is in second normal form, and
– Every non-primary-key column is

(non-transitively) directly dependent on the
entire primary key

36

AUTHORS

ORDERS

BOOKS

isbn

Relational DB Design: DB2

37

title

quantity author
isbn

quantity
custname

street

zipcode

city

state

custid

isbn

custid

CUSTOMERS

Dependencies in DB2:

DB2 is not in third normal form

BOOKS
isbn title quantity
123 The Practice of Programming 500
234 The C Programming Language 800
345 Algorithms in C 650

AUTHORS
isbn author
123 Kernighan
123 Pike
234 Kernighan
234 Ritchie
345 Sedgewick

CUSTOMERS
custid custname street zipcode
111 Princeton 114 Nassau St 08540
222 Harvard 1256 Mass Ave 02138
333 MIT 292 Main St 02142

ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30

ZIPCODES
zipcode city state
08540 Princeton NJ
02138 Cambridge MA
02142 Cambridge MA

Relational DB Design: DB3

38

DB3:

AUTHORS
BOOKS

isbn

Relational DB Design: DB3

39

title

quantity

author
isbn

custname

street

zipcode
city

state

custid

CUSTOMERS

ORDERS

quantity
custid

isbn

zipcode

ZIPCODES

Dependencies in DB3:

DB3 is in third normal form

Relational DB Design: Summary

40

Unnormalized form

First normal form

Second normal form

Eliminate domains which have
relations as elements

Eliminate non-full dependence of
non-prime attributes on candidate keys

Eliminate transitive dependence of
non-prime attributes on candidate keys

Third normal form

Codd’s 1971 Paper

Relational DB Design

• Some additional points:
– Database designers routinely violate normal

forms
– There is a substantial mathematical theory of

relational database design

41

Lecture Summary

• In this lecture we covered:
– Relational DB transactions: atomicity
– Relational DB transactions: locking
– Relational DB design

42

Lecture Series Summary

• In this lecture series we covered:
– Databases (DBs) and database

management systems (DBMSs)…
– With a focus on relational DBs and

DBMSs…
– With a focus on the SQLite DBMS…
– With a focus on programming with SQLite

• See also...

43

See Also

• Appendices
– Appendix 1: Before relational DBs
– Appendix 2: After relational DBs

• Optional lecture slide decks
– PostgreSQL
– SQLAlchemy

44

More Information

• The COS 333 Lectures web page
provides references to supplementary
information

45

Appendix 1:
Before Relational DBs

46

Before Relational DBs

• Before relational DBs, there were…

• Navigational DBs
– Data are linked into graph structure

47

isbn title quantity

author

custname street zipcode

city state

custid quantity

BOOK

ORDER AUTHOR

CUSTOMER

ZIPCODE

Before Relational DBs

48

root

*

* +

1

1

Example
Navigational DB

Princeton | 114 Nassau St | 08540

111 | 30222 | 20ORDER
(custid, quantity)

Harvard | 1256 Mass Ave | 02138

CUSTOMER
(custname, street,
zipcode)

Which customers purchased the book whose ISBN is 123?

123 | The Practice of Programming | 500BOOK
(isbn, title, quantity)

Before Relational DBs

49

root

Before Relational DBs

• Navigational DBs
– Queries are biased
– DB designer must anticipate queries

• Relational DBs
– Queries are unbiased
– DB designer need not anticipate queries
– However, DB designer can create indices

50

Appendix 2:
After Relational DBs

51

After Relational DBs

• For some apps:
– Relational DBMSs are more complex than

necessary
– The relational DB model is a poor fit

52

After Relational DBs

53

Data Model

Relational Non-Relational
(NoSQL)

Key-Value
Stores

Document
Stores

Wide-Column
Stores

…

Data Model

Relational Non-Relational
(NoSQL)

Document
Stores

Wide-Column
Stores

After Relational DBs

54

Key-Value
Stores

…

After Relational DBs

• Key-value store
– Values: arbitrary bytes
– Data structure: key-value pairs
– Access: by key
– Examples: Redis, Memcached, Microsoft

Azure Cosmos DB, Hazelcast, Ehcache

55

After Relational DBs

56

Data Model

Relational Non-Relational
(NoSQL)

Key-Value
Stores

Document
Stores

Wide-Column
Stores

…

After Relational DBs

• Document store
– Values: documents with internal structure

(e.g., JSON)
– Data structure: key-value pairs
– Access: by key or content
– Examples: MongoDB, Amazon DynamoDB,

Couchbase, CouchDB, MarkLogic

57

After Relational DBs

58

Data Model

Relational Non-Relational
(NoSQL)

Key-Value
Stores

Document
Stores

Wide-Column
Stores

…

After Relational DBs

• Wide-column store
– Values: Arbitrary bytes
– Data structure: Multidimensional associative

array
– Examples: Cassandra, HBase, Microsoft

Azure Cosmos DB

59

After Relational DBs

60

Rank DBMS DB Data Model Score
1 Oracle Relational 1171
2 MySQL Relational 892
3 Microsoft SQL Server Relational 717
4 PostgreSQL Relational 657
5 MongoDB Document Store 381
6 Snowflake Relational 190
7 Redis Key-Value Store 145
… … … …
11 SQLite Relational 108

Popular DBMSs, according to
https://db-engines.com/en/ranking as of Sept 2025:

https://db-engines.com/en/ranking

