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Objectives

• We will cover:
– Databases (DBs) and database 

management systems (DBMSs)…
– With a focus on relational DBs and 

DBMSs…
– With a focus on the SQLite DBMS…
– With a focus on programming with SQLite
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Objectives

• Question: How does one use SQLite?
• Answer:  In this course:

– Via the SQLite command-line client 
– Via programs that you compose…
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Agenda

• Relational DB app architecture
• Relational DB pgmming
• Relational DB pgmming: prepared stmts
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Python program
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Agenda

• Relational DB app architecture
• Relational DB pgmming
• Relational DB pgmming: prepared stmts
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Relational DB Programming

• Code structure
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connection = connect(…)
…
…
connection.close()

connection = connect(…)
try:
    …
    …
finally:
    connection.close()

with connect(…) as connection:
    …
    …

Better:

Better still (but see next slide):

Baseline:



Relational DB Programming

• Code structure
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with connect(…) as connection:
    …
    …

import contextlib
…
with contextlib.closing(connect(…)) as connection:
    …
    …

For more info: https://realpython.com/python-with-statement/ 

Doesn’t close the 
connection!!!

https://realpython.com/python-with-statement/


Relational DB Programming

• Code structure
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cursor = connection.cursor()
…
…
cursor.close()

cursor = connection.cursor()
try:
    …
    …
finally:
    cursor.close()

Better:
Baseline:

with connection.cursor() as cursor
    …
    …

Better still (but see next slide):



Relational DB Programming

• Code structure
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with connection.cursor() as cursor:
    …
    …

import contextlib
…
with contextlib.closing(connection.cursor()) as cursor:
    …
    …

For more info: https://realpython.com/python-with-statement/ 

Not supported

https://realpython.com/python-with-statement/


Relational DB Programming

• See create.py
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$ python create.py
$



Relational DB Programming

• See display.py

15

$ python display.py
-------------------------------------------
books
-------------------------------------------
('123', 'The Practice of Programming', 500)
('234', 'The C Programming Language', 800)
('345', 'Algorithms in C', 650)
-------------------------------------------
authors
-------------------------------------------
('123', 'Kernighan')
('123', 'Pike')
('234', 'Kernighan')
('234', 'Ritchie')
('345', 'Sedgewick')

-------------------------------------------
zipcodes
-------------------------------------------
('08540', 'Princeton', 'NJ')
('02138', 'Cambridge', 'MA')
('02142', 'Cambridge', 'MA')
-------------------------------------------
customers
-------------------------------------------
('111', 'Princeton', '114 Nassau St', 
'08540')
('222', 'Harvard', '1256 Mass Ave', 
'02138')
('333', 'MIT', '292 Main St', '02142')
-------------------------------------------
orders
-------------------------------------------
('123', '222', 20)
('345', '222', 100)
('123', '111', 30)

$ 



Relational DB Programming

• See display.py (cont.)
– To use a cursor to select data:
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cursor.execute('SELECT * FROM books')
row = cursor.fetchone()
while row is not None:
    print(row)
    row = cursor.fetchone()

cursor.execute('SELECT * FROM books')
table = cursor.fetchall()
for row in table:
    print(row)

or



Relational DB Programming

• See authorsearch.py
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$ python authorsearch.py Kernighan
ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 234
Title: The C Programming Language
Quantity: 800

$ 



Relational DB Programming

• See order.py
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$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python order.py 123 222
$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222’, 21)
('345', '222', 100)
('123', '111', 30)
$



Agenda

• Relational DB app architecture
• Relational DB pgmming
• Relational DB pgmming: prepared 

stmts
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DB Pgmming: Prepared Stmts

• Problem:
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SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = '{author}'

Consider this SQL statement executed by 
authorsearch.py:



SQL Injection Attacks

• User provides this author to 
authorsearch.py:
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O'Reilly



SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = '{author}'

DB Pgmming: Prepared Stmts
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SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = 'O'Reilly'

O'Reilly



DB Pgmming: Prepared Stmts
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$ python authorsearch.py "O'Reilly"
authorsearch.py: near "Reilly": syntax error
$

Double quotes here tell bash to consider the 
single quote within O'Reilly to be an ordinary 
character



DB Pgmming: Prepared Stmts
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UPDATE orders SET quantity = quantity+1
   WHERE isbn='{isbn}' AND custid='{custid}'

Consider this SQL statement executed by 
order.py:



SQL Injection Attacks

• User provides to order.py this isbn:

• … and this custid:
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12'3

22'2



UPDATE orders SET quantity = quantity+1
WHERE isbn = '{isbn}' AND custid = '{custid}'

DB Pgmming: Prepared Statements
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UPDATE orders SET quantity = quantity+1
WHERE isbn = '12'3' AND custid = '2'22'

12'3 2'22



$ python order.py "12'3" "2'22"
order.py: near "3": syntax error
$

DB Pgmming: Prepared Stmts
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DB Pgmming: Prepared Stmts

• Actually…
– The problem is much worse than indicated

• See Appendix 1: SQL Injection Attacks
• See Security Issues in Web Programming 

lectures (later in the course)
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DB Pgmming: Prepared Stmts

• Solution:  Prepared statements
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DB Pgmming: Prepared Stmts

• See authorsearchprep.py
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$ python authorsearchprep.py Kernighan
ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 234
Title: The C Programming Language
Quantity: 800

$



DB Pgmming: Prepared Stmts

• See authorsearchprep.py (cont.)
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$ python authorsearchprep.py "O'Reilly"
$



DB Pgmming: Prepared Stmts

• See orderprep.py
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$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python orderprep.py 123 222
$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222’, 21)
('345', '222', 100)
('123', '111', 30)
$



DB Pgmming: Prepared Stmts

• See orderprep.py (cont.)
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$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python orderprep.py "12'3" "2'22"
$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222’, 20)
('345', '222', 100)
('123', '111', 30)
$



Lecture Summary

• In this lecture we covered:
– Relational DB app architecture
– Relational DB pgmming
– Relational DB pgmming: prepared stmts

• See also
– Appendix 1: SQL Injection Attacks

34



Appendix 1:
SQL Injection Attacks
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SQL Injection Attacks

• Problem:
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SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = '{author}'

Consider this SQL statement executed by 
authorsearch.py:



SQL Injection Attacks

• Malicious user provides this author to 
authorsearch.py:
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junk' OR 'x'='x



SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = '{author}'

SQL Injection Attacks
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SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = 'junk' OR 'x'='x'

junk' OR 'x'='x



SQL Injection Attacks
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SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE books.isbn = authors.isbn
   AND author = 'junk' OR 'x'='x'

AND has higher precedence than OR

SELECT books.isbn, title, quantity
   FROM books, authors
   WHERE (books.isbn = authors.isbn
   AND author = 'junk') OR ('x'='x')



$ python authorsearch.py "junk' OR 'x'='x"
ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

SQL Injection Attacks
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ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

$

SQL injection attack



SQL Injection Attacks

• Problem (via another example)
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UPDATE orders SET quantity = quantity+1
   WHERE isbn='{isbn}' AND custid='{custid}' 

Consider this SQL statement executed by 
order.py:



SQL Injection Attacks

• Malicious user provides to order.py this 
isbn:

• … and this custid:
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222' OR 'x'='x

123



SQL Injection Attacks
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222' OR 'x'='x

UPDATE orders SET quantity = quantity+1
   WHERE isbn='{isbn}' AND custid='{custid}' 

123

UPDATE orders SET quantity = quantity+1
   WHERE isbn='123' AND custid='222' OR 'x'='x'

AND has higher precedence than OR

UPDATE orders SET quantity = quantity+1
   WHERE (isbn='123' AND custid='222') OR ('x'='x')



$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python order.py 123 "222' OR 'x'='x"
$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222', 21)
('345', '222', 101)
('123', '111', 31)

SQL Injection Attacks
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SQL
injection
attack



SQL Injection Attacks

• For more examples of SQL injection 
attacks:
– http://unixwiz.net/techtips/sql-injection.html 
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http://unixwiz.net/techtips/sql-injection.html


SQL Injection Attacks

• A solution...
• Prepared statements
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SQL Injection Attacks
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$ python authorsearchprep.py "junk' OR 'x'='x"
$



SQL Injection Attacks
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$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python orderprep.py 123 "junk' OR 'x'='x"
$ python display.py
…
-------------------------------------------
orders
-------------------------------------------
('123', '222’, 20)
('345', '222', 100)
('123', '111', 30)
$


