
Database Programming
(Part 2)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Databases (DBs) and database

management systems (DBMSs)…
– With a focus on relational DBs and

DBMSs…
– With a focus on the SQLite DBMS…
– With a focus on programming with SQLite

2

Objectives

• Question: How does one use SQLite?
• Answer: In this course:

– Via the SQLite command-line client
– Via programs that you compose…

3

Agenda

• Relational DB app architecture
• Relational DB pgmming
• Relational DB pgmming: prepared stmts

4

Program

Database
driver

Relational DB App Arch

5

DBMS

Python program

DBMS-specific impl

Relational DB App Arch

6

DBMS
DBAPI

Database
protocol

Data
store

Socket

File I/O

Python program

psycopg

Relational DB App Arch

7

PostgreSQL
DBMS

DBAPI

PostgreSQL
protocol

Data
store

Socket

File I/O

When using PostgreSQL

Python program

sqlite3

Relational DB App Arch

8

SQLite
DBMS

DBAPI

Data
store

File I/O

SQLite protocol

When using SQLite

Agenda

• Relational DB app architecture
• Relational DB pgmming
• Relational DB pgmming: prepared stmts

9

Relational DB Programming

• Code structure

10

connection = connect(…)
…
…
connection.close()

connection = connect(…)
try:
 …
 …
finally:
 connection.close()

with connect(…) as connection:
 …
 …

Better:

Better still (but see next slide):

Baseline:

Relational DB Programming

• Code structure

11

with connect(…) as connection:
 …
 …

import contextlib
…
with contextlib.closing(connect(…)) as connection:
 …
 …

For more info: https://realpython.com/python-with-statement/

Doesn’t close the
connection!!!

https://realpython.com/python-with-statement/

Relational DB Programming

• Code structure

12

cursor = connection.cursor()
…
…
cursor.close()

cursor = connection.cursor()
try:
 …
 …
finally:
 cursor.close()

Better:
Baseline:

with connection.cursor() as cursor
 …
 …

Better still (but see next slide):

Relational DB Programming

• Code structure

13

with connection.cursor() as cursor:
 …
 …

import contextlib
…
with contextlib.closing(connection.cursor()) as cursor:
 …
 …

For more info: https://realpython.com/python-with-statement/

Not supported

https://realpython.com/python-with-statement/

Relational DB Programming

• See create.py

14

$ python create.py
$

Relational DB Programming

• See display.py

15

$ python display.py

books

('123', 'The Practice of Programming', 500)
('234', 'The C Programming Language', 800)
('345', 'Algorithms in C', 650)

authors

('123', 'Kernighan')
('123', 'Pike')
('234', 'Kernighan')
('234', 'Ritchie')
('345', 'Sedgewick')

zipcodes

('08540', 'Princeton', 'NJ')
('02138', 'Cambridge', 'MA')
('02142', 'Cambridge', 'MA')

customers

('111', 'Princeton', '114 Nassau St',
'08540')
('222', 'Harvard', '1256 Mass Ave',
'02138')
('333', 'MIT', '292 Main St', '02142')

orders

('123', '222', 20)
('345', '222', 100)
('123', '111', 30)

$

Relational DB Programming

• See display.py (cont.)
– To use a cursor to select data:

16

cursor.execute('SELECT * FROM books')
row = cursor.fetchone()
while row is not None:
 print(row)
 row = cursor.fetchone()

cursor.execute('SELECT * FROM books')
table = cursor.fetchall()
for row in table:
 print(row)

or

Relational DB Programming

• See authorsearch.py

17

$ python authorsearch.py Kernighan
ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 234
Title: The C Programming Language
Quantity: 800

$

Relational DB Programming

• See order.py

18

$ python display.py
…

orders

('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python order.py 123 222
$ python display.py
…

orders

('123', '222’, 21)
('345', '222', 100)
('123', '111', 30)
$

Agenda

• Relational DB app architecture
• Relational DB pgmming
• Relational DB pgmming: prepared

stmts

19

DB Pgmming: Prepared Stmts

• Problem:

20

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = '{author}'

Consider this SQL statement executed by
authorsearch.py:

SQL Injection Attacks

• User provides this author to
authorsearch.py:

21

O'Reilly

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = '{author}'

DB Pgmming: Prepared Stmts

22

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = 'O'Reilly'

O'Reilly

DB Pgmming: Prepared Stmts

23

$ python authorsearch.py "O'Reilly"
authorsearch.py: near "Reilly": syntax error
$

Double quotes here tell bash to consider the
single quote within O'Reilly to be an ordinary
character

DB Pgmming: Prepared Stmts

24

UPDATE orders SET quantity = quantity+1
 WHERE isbn='{isbn}' AND custid='{custid}'

Consider this SQL statement executed by
order.py:

SQL Injection Attacks

• User provides to order.py this isbn:

• … and this custid:

25

12'3

22'2

UPDATE orders SET quantity = quantity+1
WHERE isbn = '{isbn}' AND custid = '{custid}'

DB Pgmming: Prepared Statements

26

UPDATE orders SET quantity = quantity+1
WHERE isbn = '12'3' AND custid = '2'22'

12'3 2'22

$ python order.py "12'3" "2'22"
order.py: near "3": syntax error
$

DB Pgmming: Prepared Stmts

27

DB Pgmming: Prepared Stmts

• Actually…
– The problem is much worse than indicated

• See Appendix 1: SQL Injection Attacks
• See Security Issues in Web Programming

lectures (later in the course)

28

DB Pgmming: Prepared Stmts

• Solution: Prepared statements

29

DB Pgmming: Prepared Stmts

• See authorsearchprep.py

30

$ python authorsearchprep.py Kernighan
ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 234
Title: The C Programming Language
Quantity: 800

$

DB Pgmming: Prepared Stmts

• See authorsearchprep.py (cont.)

31

$ python authorsearchprep.py "O'Reilly"
$

DB Pgmming: Prepared Stmts

• See orderprep.py

32

$ python display.py
…

orders

('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python orderprep.py 123 222
$ python display.py
…

orders

('123', '222’, 21)
('345', '222', 100)
('123', '111', 30)
$

DB Pgmming: Prepared Stmts

• See orderprep.py (cont.)

33

$ python display.py
…

orders

('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python orderprep.py "12'3" "2'22"
$ python display.py
…

orders

('123', '222’, 20)
('345', '222', 100)
('123', '111', 30)
$

Lecture Summary

• In this lecture we covered:
– Relational DB app architecture
– Relational DB pgmming
– Relational DB pgmming: prepared stmts

• See also
– Appendix 1: SQL Injection Attacks

34

Appendix 1:
SQL Injection Attacks

35

SQL Injection Attacks

• Problem:

36

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = '{author}'

Consider this SQL statement executed by
authorsearch.py:

SQL Injection Attacks

• Malicious user provides this author to
authorsearch.py:

37

junk' OR 'x'='x

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = '{author}'

SQL Injection Attacks

38

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = 'junk' OR 'x'='x'

junk' OR 'x'='x

SQL Injection Attacks

39

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE books.isbn = authors.isbn
 AND author = 'junk' OR 'x'='x'

AND has higher precedence than OR

SELECT books.isbn, title, quantity
 FROM books, authors
 WHERE (books.isbn = authors.isbn
 AND author = 'junk') OR ('x'='x')

$ python authorsearch.py "junk' OR 'x'='x"
ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

ISBN: 123
Title: The Practice of Programming
Quantity: 500

SQL Injection Attacks

40

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 234
Title: The C Programming Language
Quantity: 800

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

ISBN: 345
Title: Algorithms in C
Quantity: 650

$

SQL injection attack

SQL Injection Attacks

• Problem (via another example)

41

UPDATE orders SET quantity = quantity+1
 WHERE isbn='{isbn}' AND custid='{custid}'

Consider this SQL statement executed by
order.py:

SQL Injection Attacks

• Malicious user provides to order.py this
isbn:

• … and this custid:

42

222' OR 'x'='x

123

SQL Injection Attacks

43

222' OR 'x'='x

UPDATE orders SET quantity = quantity+1
 WHERE isbn='{isbn}' AND custid='{custid}'

123

UPDATE orders SET quantity = quantity+1
 WHERE isbn='123' AND custid='222' OR 'x'='x'

AND has higher precedence than OR

UPDATE orders SET quantity = quantity+1
 WHERE (isbn='123' AND custid='222') OR ('x'='x')

$ python display.py
…

orders

('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python order.py 123 "222' OR 'x'='x"
$ python display.py
…

orders

('123', '222', 21)
('345', '222', 101)
('123', '111', 31)

SQL Injection Attacks

44

SQL
injection
attack

SQL Injection Attacks

• For more examples of SQL injection
attacks:
– http://unixwiz.net/techtips/sql-injection.html

45

http://unixwiz.net/techtips/sql-injection.html

SQL Injection Attacks

• A solution...
• Prepared statements

46

SQL Injection Attacks

47

$ python authorsearchprep.py "junk' OR 'x'='x"
$

SQL Injection Attacks

48

$ python display.py
…

orders

('123', '222', 20)
('345', '222', 100)
('123', '111', 30)
$ python orderprep.py 123 "junk' OR 'x'='x"
$ python display.py
…

orders

('123', '222’, 20)
('345', '222', 100)
('123', '111', 30)
$

