
Database Programming
(Part 1)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– Databases (DBs) and database

management systems (DBMSs)…
– With a focus on relational DBs and

DBMSs…
– With a focus on the SQLite DBMS…
– With a focus on programming with SQLite

2

Agenda

• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

3

Relational DBs and DBMSs

• Database (DB)
– A structured collection of persistent data

• Database management system (DBMS)
– Software that maintains DBs

• Database administrator (DBA)
– A person who administers DBs and DBMSs

4

Relational DBs and DBMSs

• A good DBMS used by good DBAs can:
– Reduce redundancy
– Avoid inconsistencies
– Facilitate data sharing
– Enforce standards
– Apply security restrictions
– Maintain integrity
– Balance conflicting requirements
– Insure safety (backups)

5

An Introduction to Database
Systems, C. J. Date

Relational DBs and DBMSs

6

Edgar Codd

Relational DBs and DBMSs

7

Formally Informally
Relations Tables
Tuples Rows
Attributes Fields

Relational DB structure:

BOOKS
isbn title quantity
123 The Practice of Programming 500
234 The C Programming Language 800
345 Algorithms in C 650

AUTHORS
isbn author
123 Kernighan
123 Pike
234 Kernighan
234 Ritchie
345 Sedgewick

CUSTOMERS
custid custname street zipcode
111 Princeton 114 Nassau St 08540
222 Harvard 1256 Mass Ave 02138
333 MIT 292 Main St 02142

ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30

ZIPCODES
zipcode city state
08540 Princeton NJ
02138 Cambridge MA
02142 Cambridge MA

Relational DBs and DBMSs

8

Agenda

• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

9

SQL and SQLite

10

Donald
Chamberlin

Raymond
Boyce

SQL

SQL and SQLite

11

D. Richard Hipp

SQLite

SQL and SQLite

12

DBMS
program

Application
program

Data
store

DBMS is a program

Socket

File I/O

Architecture when using a typical DBMS:

Application
program

SQL and SQLite

13

SQLite
module

Data
store

DBMS is a module

File I/O

Architecture when using SQLite:

SQLite
Data Type

Python
Data Type

INTEGER int

REAL float

TEXT str

BLOB bytes

SQL and SQLite

14

Python: None
SQLite: NULL

Agenda

• Relational DBs and DBMSs
• SQL and SQLite
• The SQLite command-line client

15

SQLite Client

• Question: How does one use SQLite?

• Answer: In this course:
– Via the SQLite command-line client
– Via programs that you compose

16

SQLite Client: Getting Started

17

$ sqlite3 bookstore.sqlite
SQLite version 3.45.1 2024-01-30 16:01:20
Enter ".help" for usage hints.
sqlite>

SQLite Client: Getting Started

18

Standard SQL
Statements

SQLite
Statements

Do not begin with a
period

Begin with a period

Contain keywords
are case insensitive

Contain keywords
are case sensitive

Must end with a
semicolon

Need not end with a
semicolon

SQLite Client: Getting Started

19

.help [-all] [pattern]

sqlite> .help
.help ?-all? ?PATTERN? Show help text for PATTERN
.quit Exit this program
.schema ?PATTERN? Show the CREATE statements matching PATTERN
.tables ?TABLE? List names of tables matching LIKE pattern
TABLE
…
sqlite> .help -all
…

CREATE TABLE [IF NOT EXISTS] table
(column datatype options, …, options);

SQLite Client: Creating Tables

20

sqlite> PRAGMA foreign_keys = ON;
sqlite> CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
sqlite>

SQLite Client: Creating Tables

21

sqlite> CREATE TABLE authors (
 isbn TEXT NOT NULL,
 author TEXT NOT NULL,
 PRIMARY KEY (isbn, author),
 FOREIGN KEY (isbn) REFERENCES books(isbn));
sqlite>

With foreign key enforcement on, the order of
table creation matters

SQLite Client: Creating Tables

22

sqlite> CREATE TABLE zipcodes (
 zipcode TEXT NOT NULL,
 city TEXT,
 state TEXT,
 PRIMARY KEY (zipcode));
sqlite>

SQLite Client: Creating Tables

23

sqlite> CREATE TABLE customers (
 custid TEXT NOT NULL,
 custname TEXT,
 street TEXT,
 zipcode TEXT,
 PRIMARY KEY (custid),
 FOREIGN KEY (zipcode) REFERENCES zipcodes(zipcode));
sqlite>

SQLite Client: Creating Tables

24

sqlite> CREATE TABLE orders (
 isbn TEXT NOT NULL,
 custid TEXT NOT NULL,
 quantity INTEGER,
 PRIMARY KEY (isbn, custid),
 FOREIGN KEY (isbn) REFERENCES books(isbn),
 FOREIGN KEY (custid) REFERENCES customers(custid));
sqlite>

SQLite Client: Creating Tables

25

.tables
sqlite> .tables
authors books customers orders zipcodes
sqlite>

.schema [table]

sqlite> .schema books
CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
sqlite>

SQLite Client: Inserting Rows

26

sqlite> INSERT INTO books (isbn, title, quantity)
 VALUES ('123','The Practice of Programming',500);
sqlite> INSERT INTO books (isbn, title, quantity)
 VALUES ('234','The C Programming Language',800);
sqlite> INSERT INTO books (isbn, title, quantity)
 VALUES ('345','Algorithms in C',650);
sqlite>

INSERT INTO table (column, …) VALUES (expr, …);

SQLite Client: Inserting Rows

27

sqlite> INSERT INTO authors (isbn, author)
 VALUES ('123','Kernighan');
sqlite> INSERT INTO authors (isbn, author)
 VALUES ('123','Pike');
sqlite> INSERT INTO authors (isbn, author)
 VALUES ('234','Kernighan');
sqlite> INSERT INTO authors (isbn, author)
 VALUES ('234','Ritchie');
sqlite> INSERT INTO authors (isbn, author)
 VALUES ('345','Sedgewick');
sqlite>

With foreign key enforcement on, the order of
row insertion matters

SQLite Client: Inserting Rows

28

sqlite> INSERT INTO zipcodes (zipcode, city, state)
 VALUES ('08540','Princeton', 'NJ');
sqlite> INSERT INTO zipcodes (zipcode, city, state)
 VALUES ('02138','Cambridge', 'MA');
sqlite> INSERT INTO zipcodes (zipcode, city, state)
 VALUES ('02142','Cambridge', 'MA');
sqlite>

SQLite Client: Inserting Rows

29

sqlite> INSERT INTO customers (custid, custname, street, zipcode)
 VALUES ('111','Princeton', '114 Nassau St', '08540');
sqlite> INSERT INTO customers (custid, custname, street, zipcode)
 VALUES ('222','Harvard', '1256 Mass Ave', '02138');
sqlite> INSERT INTO customers (custid, custname, street, zipcode)
 VALUES ('333','MIT', '292 Main St', '02142');
sqlite>

SQLite Client: Inserting Rows

30

sqlite> INSERT INTO orders (isbn, custid, quantity)
 VALUES ('123','222',20);
sqlite> INSERT INTO orders (isbn, custid, quantity)
 VALUES ('345','222',100);
sqlite> INSERT INTO orders (isbn, custid, quantity)
 VALUES ('123','111',30);
sqlite>

SELECT expr, … FROM table, … [WHERE condition]
[ORDER BY column [ASC | DESC]];

SQLite Client: Selecting Rows

31Note: The result is a table

sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> SELECT isbn, title FROM books;
123|The Practice of Programming
234|The C Programming Language
345|Algorithms in C
sqlite> SELECT * FROM books ORDER BY quantity DESC;
234|The C Programming Language|800
345|Algorithms in C|650
123|The Practice of Programming|500
sqlite>

SQLite Client: Selecting Rows

32

sqlite> SELECT * FROM books WHERE quantity=650;
345|Algorithms in C|650
sqlite> SELECT * FROM books WHERE quantity>=650;
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> SELECT * FROM orders WHERE isbn=123 AND custid=222;
123|222|20
sqlite> SELECT * FROM orders WHERE isbn=123 OR custid=222;
123|222|20
345|222|100
123|111|30
sqlite>

WHERE clauses:

sqlite> SELECT * from books, authors;
123|The Practice of Programming|500|123|Kernighan
123|The Practice of Programming|500|123|Pike
123|The Practice of Programming|500|234|Kernighan
123|The Practice of Programming|500|234|Ritchie
123|The Practice of Programming|500|345|Sedgewick
234|The C Programming Language|800|123|Kernighan
234|The C Programming Language|800|123|Pike
234|The C Programming Language|800|234|Kernighan
234|The C Programming Language|800|234|Ritchie
234|The C Programming Language|800|345|Sedgewick
345|Algorithms in C|650|123|Kernighan
345|Algorithms in C|650|123|Pike
345|Algorithms in C|650|234|Kernighan
345|Algorithms in C|650|234|Ritchie
345|Algorithms in C|650|345|Sedgewick
sqlite>

SQLite Client: Selecting Rows

33

Joining tables:

sqlite> SELECT * from books, authors
 WHERE books.isbn=authors.isbn;
123|The Practice of Programming|500|123|Kernighan
123|The Practice of Programming|500|123|Pike
234|The C Programming Language|800|234|Kernighan
234|The C Programming Language|800|234|Ritchie
345|Algorithms in C|650|345|Sedgewick
sqlite>

SQLite Client: Selecting Rows

34

More reasonable joining of tables:

SQLite Client: Selecting Rows

35

Alternative (newer) syntax:

sqlite> SELECT * from books INNER JOIN authors
 WHERE books.isbn=authors.isbn;
123|The Practice of Programming|500|123|Kernighan
123|The Practice of Programming|500|123|Pike
234|The C Programming Language|800|234|Kernighan
234|The C Programming Language|800|234|Ritchie
345|Algorithms in C|650|345|Sedgewick
sqlite>

sqlite> SELECT title, quantity
 FROM books, orders
 WHERE books.isbn=orders.isbn;
Error: ambiguous column name: quantity
sqlite> SELECT title, orders.quantity
 FROM books, orders
 WHERE books.isbn=orders.isbn;
The Practice of Programming|20
The Practice of Programming|30
Algorithms in C|100
sqlite>

SQLite Client: Selecting Rows

36

Qualifying fields:

sqlite> SELECT custname, title, orders.quantity
 FROM books, customers, orders
 WHERE books.isbn=orders.isbn
 AND orders.custid=customers.custid;
Harvard|The Practice of Programming|20
Harvard|Algorithms in C|100
Princeton|The Practice of Programming|30
sqlite>

SQLite Client: Selecting Rows

37

Joining more than 2 tables:

sqlite> SELECT * FROM books, orders
 WHERE books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
345|Algorithms in C|650|345|222|100
sqlite>

SQLite Client: Selecting Rows

38

Joining tables with “missing rows”:

123|The Practice of Programming|500|123|222|20
123|The Practice of Programming|500|345|222|100
123|The Practice of Programming|500|123|111|30
234|The C Programming Language|800|123|222|20
234|The C Programming Language|800|345|222|100
234|The C Programming Language|800|123|111|30
345|Algorithms in C|650|123|222|20
345|Algorithms in C|650|345|222|100
345|Algorithms in C|650|123|111|30

SQLite Client: Selecting Rows

39

No row for the book with isbn 234 is in result table
Beware (Assignment 1):

In reg.sqlite some courses have no professors

Joining tables with “missing rows” (cont.):

sqlite> SELECT * FROM books WHERE title LIKE 'The%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> SELECT * FROM books WHERE title LIKE '%of%';
123|The Practice of Programming|500
sqlite> SELECT * FROM books WHERE title LIKE 'T_e%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite>

SQLite Client: Selecting Rows Adv

40

The LIKE operator and wildcards:

% matches any 0 or more characters
_ matches any 1 character

sqlite> SELECT * FROM authors WHERE author="Pike";
123|Pike
sqlite> SELECT * FROM authors WHERE author="pike";
sqlite> SELECT * FROM books WHERE title LIKE 't_e%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> PRAGMA case_sensitive_like=ON;
sqlite> SELECT * FROM books WHERE title LIKE 't_e%';
sqlite>

SQLite Client: Selecting Rows Adv

41

Case (in)sensitivity:

= is case sensitive
LIKE is case insensitive by default

Aside: Escape Char
C, Java, and Python define backslash as
the escape char

"abc\"def"

Within a string literal, the char following the
escape char is not a special char

SQL doesn’t define an escape char, but…

The second double quote char doesn’t delimit the
string, but instead is an ordinary char within the
string

42

sqlite> SELECT * FROM books WHERE title LIKE 'The%';
123|The Practice of Programming|500
234|The C Programming Language|800
sqlite> SELECT * FROM books WHERE title LIKE 'The\%' ESCAPE '\';
sqlite>

SQLite Client: Selecting Rows Adv

43

The ESCAPE clause for the LIKE operator

UPDATE table SET column1=expr1 [, column2=expr2 …]
[WHERE condition]

SQLite Client: Changing Rows

44

sqlite> UPDATE books SET quantity=60 WHERE isbn=123;
sqlite> SELECT * from books;
123|The Practice of Programming|60
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> UPDATE books SET quantity=quantity+1 WHERE isbn=123;
sqlite> SELECT * from books;
123|The Practice of Programming|61
234|The C Programming Language|800
345|Algorithms in C|650
sqlite> UPDATE books SET quantity=500 WHERE isbn=123;
sqlite> SELECT * from books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite>

DELETE FROM table [WHERE condition];

SQLite Client: Deleting Rows

45

sqlite> INSERT INTO books (isbn, title, quantity)
 VALUES ('456', 'Core Java', 120);
sqlite> SELECT * from books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
456|Core Java|120
sqlite> DELETE FROM books WHERE isbn=456;
sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite>

DROP TABLE [IF EXISTS] table

SQLite Client: Deleting Tables

46

sqlite> DROP TABLE orders;
sqlite> DROP TABLE customers;
sqlite> DROP TABLE zipcodes;
sqlite> DROP TABLE authors;
sqlite> DROP TABLE books;
sqlite> .tables
sqlite>

With foreign key enforcement on, the order of
table deletion matters

.quit

SQLite Client: Exiting

47

sqlite> .quit
$

SQLite Client

• Question: How does one use SQLite?
• Answer: In this course:

– Via the SQLite command-line client
– Via programs that you compose…

48

Lecture Summary
• In this lecture we covered:

– Relational DBs and DBMSs
– SQL and SQLite
– The SQLite command-line client

• See also:
– Appendix 1: SQL Client: Reading & Writing
– Appendix 2: Fancy SQL Joins
– Appendix 3: Changing table structure
– Appendix 4: Indices

49

Appendix 1:
SQL Client: Reading & Writing

50

SQLite Client: Reading & Writing

51

$ cat bookstore.sql
PRAGMA foreign_keys = ON;
…
DROP TABLE IF EXISTS orders;
…
CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
…
INSERT INTO books (isbn, title, quantity)
 VALUES ('123','The Practice of Programming',500);
…
$

To read SQL statements from a text file:

SQLite Client: Reading & Writing

52

$ sqlite3 bookstore.sqlite
sqlite> .read bookstore.sql
sqlite> .quit
$

To read SQL statements from a text file (cont.):

SQLite Client: Reading & Writing

53

$ sqlite3 bookstore.sqlite
sqlite> .output bookstorebackup.sql
sqlite> .dump
sqlite> .quit
$

To write SQL statements to a text file:

SQLite Client: Reading & Writing

54

$ cat bookstorebackup.sql
…
CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
INSERT INTO books VALUES('123','The Practice of Programming',500);
INSERT INTO books VALUES('234','The C Programming Language',800);
INSERT INTO books VALUES('345','Algorithms in C',650);
CREATE TABLE authors (
…
$

Resulting file:

Appendix 2:
Fancy SQL Joins

55

Fancy SQL Joins
Recall:

Cartesian
product

56

sqlite> SELECT * FROM books;
123|The Practice of Programming|500
234|The C Programming Language|800
345|Algorithms in C|650
sqlite>

sqlite> SELECT * FROM orders;
123|222|20
345|222|100
123|111|30
sqlite>

sqlite> SELECT * FROM books, orders;
123|The Practice of Programming|500|123|222|20
123|The Practice of Programming|500|345|222|100
123|The Practice of Programming|500|123|111|30
234|The C Programming Language|800|123|222|20
234|The C Programming Language|800|345|222|100
234|The C Programming Language|800|123|111|30
345|Algorithms in C|650|123|222|20
345|Algorithms in C|650|345|222|100
345|Algorithms in C|650|123|111|30
sqlite>

Fancy SQL Joins
Ordinary SQL join

Conceptually, to compute result table:
Compute Cartesian product of books and orders
Retain only those rows in which books.isbn = orders.isbn

57

sqlite> SELECT * FROM books, orders WHERE
books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
345|Algorithms in C|650|345|222|100
sqlite>

Fancy SQL Joins

58

Inner join

Same as ordinary join

Note: No row for book with isbn 234 is present

sqlite> SELECT * FROM books INNER JOIN orders
ON books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
345|Algorithms in C|650|345|222|100
sqlite>

Fancy SQL Joins

59

Conceptually, to compute result table:
Compute inner join
Add each book row that is missing, padded with NULL fields

Left outer join
books orders

sqlite> SELECT * FROM books LEFT OUTER JOIN
orders ON books.isbn=orders.isbn;
123|The Practice of Programming|500|123|111|30
123|The Practice of Programming|500|123|222|20
234|The C Programming Language|800|||
345|Algorithms in C|650|345|222|100
sqlite>

SELECT * from books
 RIGHT OUTER JOIN orders
 ON books.isbn = orders.isbn;

Fancy SQL Joins

60

Conceptually, to compute result table:
Compute inner join
Add each orders row that is missing, padded with NULL fields

Not supported by SQLite
But could use left outer join with tables switched!

Right outer join

ordersbooks

SELECT * from books
 FULL OUTER JOIN orders
 ON books.isbn = orders.isbn;

Fancy SQL Joins

61

Conceptually, to compute result table:
Compute inner join
Add each book row that is missing,
padded with NULL fields
Add each orders row that is missing,
padded with NULL fields

Not supported by SQLite

Full outer join

ordersbooks

Fancy SQL Joins

• Note:
– COS 333 assignments do not require outer

joins
– Your COS 333 project probably will not

require outer joins
– But understanding outer joins may help you

to understand inner joins more deeply

62

Appendix 3:
Changing Table Structure

63

ALTER TABLE table specification [, specification] …;

Changing Table Structure

64

sqlite> ALTER TABLE books ADD COLUMN price INTEGER;
sqlite> .schema books
CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 price INTEGER,
 PRIMARY KEY (isbn));
sqlite> SELECT * FROM books;
123|The Practice of Programming|500|
234|The C Programming Language|800|
345|Algorithms in C|650|
sqlite>

Changing Table Structure

65

sqlite> ALTER TABLE books DELETE COLUMN price;
Error: near "DELETE": syntax error
sqlite>

sqlite> ALTER TABLE books RENAME TO books2;
sqlite> CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
sqlite> INSERT INTO books (isbn, title, quantity)
 SELECT isbn, title, quantity from books2;
sqlite> DROP TABLE books2;

Works in standard SQL, but not in SQLite:

Works in SQLite:

Appendix 4:
Indices

66

CREATE INDEX index ON table (field);

Indices

67

sqlite> CREATE INDEX books_index ON books (isbn);
sqlite> .schema books
CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
CREATE INDEX books_index on books (isbn);
sqlite>

Creating indices:

Pro: Fast search on isbn field of books table
Con: Slow insert of rows into books table
Con: Slow delete of rows from books table

DROP INDEX index;

Indices

68

sqlite> drop index books_index;
sqlite> .schema books
CREATE TABLE books (
 isbn TEXT NOT NULL,
 title TEXT,
 quantity INTEGER,
 PRIMARY KEY (isbn));
sqlite>

Dropping indices:

