Database Programming
(Part 1)

Copyright © 2026 by

Robert M. Dondero, Ph.D.
Princeton University

Objectives

. We will cover:

Databases (DBs) and database
management systems (DBMSs)...

With a focus on relational DBs and
DBMSs...

With a focus on the SQLite DBMS...
With a focus on programming with SQL.ite

Agenda

. Relational DBs and DBMSs
. SQL and SQLite
. The SQLite command-line client

Relational DBs and DBMSs

. Database (DB)
- A structured collection of persistent data

. Database management system (DBMS)
_ Software that maintains DBs

. Database administrator (DBA)
- A person who administers DBs and DBMSs

Relational DBs and DBMSs

. A good DBMS used by good DBAs can:

- Reduce redundancy
- Avoid inconsistencies

_ Facilitate data Sharing An Introduction to Database
Systems, C. J. Date
- Enforce standards

- Apply security restrictions

- Maintain integrity

- Balance conflicting requirements
- Insure safety (backups)

Relational DBs and DBMSs

Edgar Codd

Relational DBs and DBMSs

Relational DB structure:

Formally Informally

Relations Tables
Tuples Rows
Attributes Fields

Relational DBs and DBMSs

BOOKS AUTHORS

isbn title quantity isbn author

123 The Practice of Programming 500 123 Kernighan

234 The C Programming Language 800 123 Pike

345 Algorithms in C 650 234 Kernighan
234 Ritchie
345 Sedgewick

ORDERS

isbn custid quantity

123 222 20

345 222 100

123 111 30

CUSTOMERS ZIPCODES

custid custname street zipcode zipcode city state

111 Princeton 114 Nassau St 08540 08540 Princeton NJ

222 Harvard 1256 Mass Ave 02138 02138 Cambridge MA

333 MIT 292 Main St 02142 02142 Cambridge MA

8

Agenda

. Relational DBs and DBMSs
. SQL and SQLite
. The SQLite command-line client

SQL and SQLite
SQL

Chamberlin

10

SQL and SQLite
SQLite

D. Richard Hipp

11

SQL and SQLite

Architecture when using a typical DBMS:

Application
program

Socket
-

DBMS is a program

DBMS
program

N A
Data

store

N

12

SQL and SQLite

Architecture when using SQLite:

Application
program

SQLite
module

File /10

>

DBMS is a module

Data

store

13

SQL and SQLite

SQLite Python
Data Type Data Type
INTEGER int

REAL float
TEXT str

BLOB bytes

Python: None
SQLite: NULL

14

Agenda

. Relational DBs and DBMSs
. SQL and SQLite
. The SQLite command-line client

15

SQLite Client

. Question: How does one use SQLite?

. Answer: In this course:

- Via the SQLite command-line client

16

SQLite Client: Getting Started

$ sqglite3 bookstore.sqglite

SQLite version 3.45.1 2024-01-30 16:01:20
Enter ".help" for usage hints.

sglite>

17

Standard SQL

Statements

Do not begin with a
period

SQLite Client: Getting Started

SQLite
Statements

Begin with a period

Contain keywords
are case insensitive

Contain keywords
are case sensitive

Must end with a
semicolon

Need not end with a
semicolon

18

SQLite Client: Getting Started

.help [-all] [pattern]

sglite> .help

.help ?-all? ?PATTERN?
.quit

.schema ?PATTERN?
.tables ?TABLE?

TABLE

sglite> .help -all

Show
Exit
Show
List

help text for PATTERN

this program

the CREATE statements matching PATTERN
names of tables matching LIKE pattern

19

SQLite Client: Creating Tables

CREATE TABLE [IF NOT EXISTS] table
(column datatype options, .., options);

sglite> PRAGMA foreign keys = ON;
sgqlite> CREATE TABLE books (
isbn TEXT NOT NULL,
title TEXT,
quantity INTEGER,
PRIMARY KEY (isbn)) ;
sglite>

20

SQLite Client: Creating Tables

sglite> CREATE TABLE authors (

isbn TEXT NOT NULL,

author TEXT NOT NULL,

PRIMARY KEY (isbn, author),

FOREIGN KEY (isbn) REFERENCES books (isbn)) ;
sglite>

With foreign key enforcement on, the order of
table creation matters

21

SQLite Client: Creating Tables

sglite> CREATE TABLE zipcodes (
zipcode TEXT NOT NULL,
city TEXT,
state TEXT,
PRIMARY KEY (zipcode)) ;
sglite>

22

SQLite Client: Creating Tables

sglite> CREATE TABLE customers (

custid TEXT NOT NULL,

custname TEXT,

street TEXT,

zipcode TEXT,

PRIMARY KEY (custid),

FOREIGN KEY (zipcode) REFERENCES zipcodes (zipcode)) ;
sglite>

23

SQLite Client: Creating Tables

sglite> CREATE TABLE orders (

isbn TEXT NOT NULL,

custid TEXT NOT NULL,

quantity INTEGER,

PRIMARY KEY (isbn, custid),

FOREIGN KEY (isbn) REFERENCES books (isbn),

FOREIGN KEY (custid) REFERENCES customers (custid)) ;
sglite>

24

SQLite Client: Creating Tables

.tables
sglite> .tables
authors books customers orders zipcodes
sglite>
.schema [table]
sgqlite> .schema books

sqgqlite>

CREATE TABLE books (

isbn TEXT NOT NULL,
title TEXT,
quantity INTEGER,

PRIMARY KEY (isbn));

25

SQLite Client: Inserting Rows

INSERT INTO table (column, ..) VALUES (expr, ..);

sglite> INSERT INTO books (isbn, title, quantity)
VALUES ('123', 'The Practice of Programming',6500) ;

sglite> INSERT INTO books (isbn, title, quantity)
VALUES ('234','The C Programming Language',b800) ;

sglite> INSERT INTO books (isbn, title, quantity)
VALUES ('345','Algorithms in C',b650) ;

sglite>

26

SQLite Client: Inserting Rows

sglite> INSERT INTO authors (isbn, author)
VALUES ('123', 'Kernighan');

sglite> INSERT INTO authors (isbn, author)
VALUES ('123', 'Pike');

sglite> INSERT INTO authors (isbn, author)
VALUES ('234','Kernighan');

sglite> INSERT INTO authors (isbn, author)
VALUES ('234','Ritchie');

sglite> INSERT INTO authors (isbn, author)
VALUES ('345','Sedgewick');

sglite>

With foreign key enforcement on, the order of
row insertion matters

SQLite Client: Inserting Rows

sgqlite> INSERT INTO zipcodes (zipcode, city, state)
VALUES ('08540', 'Princeton', 'NJ');

sgqlite> INSERT INTO zipcodes (zipcode, city, state)
VALUES ('02138', 'Cambridge', 'MA');

sgqlite> INSERT INTO zipcodes (zipcode, city, state)
VALUES ('02142', 'Cambridge', 'MA');

sglite>

28

SQLite Client: Inserting Rows

sgqlite> INSERT INTO customers (custid, custname, street, zipcode)
VALUES ('1l11l','Princeton', 'l14 Nassau St', '08540');

sgqlite> INSERT INTO customers (custid, custname, street, zipcode)
VALUES ('222','Harvard',6 'l1l256 Mass Ave', '02138');

sgqlite> INSERT INTO customers (custid, custname, street, zipcode)
VALUES ('333','MIT', '292 Main St', '02142'");

sglite>

29

SQLite Client: Inserting Rows

sglite> INSERT INTO orders (isbn, custid, quantity)
VALUES ('123','222',20);

sglite> INSERT INTO orders (isbn, custid, quantity)
VALUES ('345','222',100);

sglite> INSERT INTO orders (isbn, custid, quantity)
VALUES ('123','111',30);

sglite>

30

SQLite Client: Selecting Rows

SELECT expr, .. FROM table, .. [WHERE condition]
[ORDER BY column [ASC | DESC]];

sglite> SELECT * FROM books;

123 |The Practice of Programming| 500
234 | The C Programming Language|800
345|Algorithms in C| 650

sglite> SELECT isbn, title FROM books;
123 |The Practice of Programming
234 | The C Programming Language
345|Algorithms in C

sglite> SELECT * FROM books ORDER BY quantity DESC;

234 | The C Programming Language|800
345|Algorithms in C|650

123 |The Practice of Programming| 500
sglite>

Note: The result is a table

31

SQLite Client: Selecting Rows

WHERE clauses:

sgqlite> SELECT * FROM books WHERE quantity=650;
345|Algorithms in C| 650

sglite> SELECT * FROM books WHERE quantity>=650;

234 | The C Programming Language| 800

345|Algorithms in C| 650

sglite> SELECT * FROM orders WHERE isbn=123 AND custid=222;
1231222120

sglite> SELECT * FROM orders WHERE isbn=123 OR custid=222;
1231222120

34512221100

1231111130

sglite>

32

SQLite Client: Selecting Rows

Joining tables:

sglite>
123 | The
123 | The
123 | The
123 | The
123 | The
234 | The
234 | The
234 | The
234 | The
234 | The

345|Algorithms in

SELECT *

from books, authors;

Practice of Programming|500|123|Kernighan
Practice of Programming|500|123|Pike
Practice of Programming|500|234|Kernighan
Practice of Programming|500|234|Ritchie
Practice of Programming|500|345|Sedgewick

Q Q0 O

C

Programming
Programming
Programming
Programming
Programming

Language | 800|123 |Kernighan
Language | 800|123 | Pike
Language | 800|234 |Kernighan
Language | 800|234 |Ritchie
Language | 800|345 | Sedgewick

Cl|650]123|Kernighan

345|Algorithms in C| 650|123 |Pike

345 |Algorithms in C|650|234|Kernighan
345|Algorithms in C| 650234 |Ritchie
345|Algorithms in C|650|345|Sedgewick

sglite>

33

SQLite Client: Selecting Rows

More reasonable joining of tables:

sglite> SELECT * from books, authors

WHERE books.isbn=authors.isbn;
123 |The Practice of Programming| 500|123 |Kernighan
123 |The Practice of Programming|500|123|Pike
234 | The C Programming Language|800|234|Kernighan
234 | The C Programming Language|800|234|Ritchie
345|Algorithms 1n C|650|345|Sedgewick
sglite>

34

SQLite Client: Selecting Rows

Alternative (newer) syntax:

sglite> SELECT * from books INNER JOIN authors
WHERE books.isbn=authors.isbn;

123 |The Practice of Programming| 500|123 |Kernighan

123 |The Practice of Programming| 500|123 |Pike

234 | The C Programming Language|800|234|Kernighan

234 | The C Programming Language|800|234|Ritchie

345|Algorithms 1n C|650|345|Sedgewick

sglite>

35

SQLite Client: Selecting Rows

Qualifying fields:

sglite> SELECT title, quantity

FROM books, orders

WHERE books.isbn=orders.isbn;
Error: ambiguous column name: quantity
sglite> SELECT title, orders.quantity

FROM books, orders

WHERE books.isbn=orders.isbn;
The Practice of Programming|20
The Practice of Programming]| 30
Algorithms in C|100
sglite>

36

SQLite Client: Selecting Rows

Joining more than 2 tables:

sglite> SELECT custname, title, orders.quantity
FROM books, customers, orders
WHERE books.isbn=orders.isbn
AND orders.custid=customers.custid;
Harvard|The Practice of Programming| 20
Harvard|Algorithms in C|100
Princeton|The Practice of Programming| 30
sglite>

37

SQLite Client: Selecting Rows

Joining tables with “missing rows”:

sglite> SELECT * FROM books, orders

WHERE books.isbn=orders.isbn;
123 |The Practice of Programming|500|123|111]30
123 | The Practice of Programming|500|123|222]20
345|Algorithms 1n C|650]1345(1222|100
sglite>

38

SQLite Client: Selecting Rows

Joining tables with “missing rows” (cont.):

123 | The Practice of Programming|500|123|222]20
' of—Programmrag 5061345222166
123 | The Practice of Programming|500(123 11130

o Do PR o

2‘3‘4"%@ \» LLugLﬁﬂﬁwm%%%%
o Do P o

2‘3‘4"%@ \» LLUgL&fﬁTﬁTﬁW@Bﬁ@@ﬂ‘&@'@ﬂ%ﬁ
] . 2

2‘3‘4"%@ \» LLUgL&fﬁTﬁTﬁ@Wﬁ@@ﬂ‘&@'@‘W

345 |Algorithms in C|650(1345|2221100

3H45+Atgortrthms—+r—C+ 650+ 3123+ +H36

No row for the book with isbn 234 is in result table

Beware (Assignment 1):

In reg.sqlite some courses have no professors
39

SQLite Client: Selecting Rows Adv

The LIKE operator and wildcards:

123 |The Practice of Programming|500
234 | The C Programming Language| 800

123 |The Practice of Programming|500
123 |The Practice of Programming|500

234 | The C Programming Language|800
sglite>

sglite> SELECT * FROM books WHERE title LIKE 'The%';

sgqlite> SELECT * FROM books WHERE title LIKE '%of%';

sgqlite> SELECT * FROM books WHERE title LIKE 'T e%';

% matches any O or more characters
__matches any 1 character

40

SQLite Client: Selecting Rows Adv

Case (in)sensitivity:

sglite>
123 | Pike
sglite>
sglite>
123 | The
234 | The
sglite>
sglite>
sglite>

SELECT * FROM authors WHERE author="Pike";

SELECT * FROM authors WHERE author="pike";
SELECT * FROM books WHERE title LIKE 't e%
Practice of Programming|500

C Programming Language | 800

PRAGMA case sensitive like=ON;

SELECT * FROM books WHERE title LIKE 't e%

' L]
4

' L]
4

= |S case sensitive
LIKE is case insensitive by default

41

Aside: Escape Char

C, Java, and Python define backslash as
the escape char

Within a string literal, the char following the
escape char is not a special char

"abc\ "def"

The second double quote char doesn’t delimit the
string, but instead is an ordinary char within the
string

SQL doesn’t define an escape char, but...

42

SQLite Client: Selecting Rows Adv

The ESCAPE clause for the LIKE operator

sgqlite>
123 | The
234 | The
sgqlite>
sgqlite>

SELECT * FROM books WHERE title LIKE
Practice of Programming|500
C Programming Language| 800
SELECT * FROM books WHERE title LIKE

'The% ' ;

'"The\%'

ESCAPE

v\v;

43

SQLite Client: Changing Rows

UPDATE table SET columnl=exprl [, columnl=expr2 ..]
[WHERE condition]

sgqlite> UPDATE books SET quantity=60 WHERE isbn=123;
sglite> SELECT * from books;

123 |The Practice of Programming| 60

234 | The C Programming Language]|800

345|Algorithms in C|650

sgqlite> UPDATE books SET quantity=quantity+l WHERE isbn=123;
sglite> SELECT * from books;

123 |The Practice of Programming|6l

234 | The C Programming Language]|800

345|Algorithms in C|650

sgqlite> UPDATE books SET quantity=500 WHERE isbn=123;
sglite> SELECT * from books;

123 |The Practice of Programming|500

234 | The C Programming Language]|800

345|Algorithms in C|650

sglite>

44

SQLite Client: Deleting Rows

DELETE FROM table [WHERE condition];

sglite> INSERT INTO books (isbn, title, quantity)
VALUES ('456', 'Core Java',6 120);

sglite> SELECT * from books;

123 | The Practice of Programming|500

234 | The C Programming Language| 800

345|Algorithms in C| 650

456 |Core Java|1l20

sglite> DELETE FROM books WHERE isbn=456;

sglite> SELECT * FROM books;

123 | The Practice of Programming|500

234 | The C Programming Language|800

345|Algorithms in C| 650

sglite>

45

SQLite Client: Deleting Tables

DROP TABLE [IF EXISTS] table

sglite> DROP TABLE orders;
sglite> DROP TABLE customers;
sglite> DROP TABLE zipcodes;
sglite> DROP TABLE authors;
sglite> DROP TABLE books;
sglite> .tables

sglite>

With foreign key enforcement on, the order of
table deletion matters

SQLite Client: Exiting

47

SQLite Client

. Question: How does one use SQLite?

. Answer: In this course:

- Via programs that you compose...

48

Lecture Summary

. In this lecture we covered:

Relational DBs and DBMSs
SQL and SQLite
The SQLite command-line client

. See also:

Appendix 1: SQL Client: Reading & Writing
Appendix 2: Fancy SQL Joins

Appendix 3: Changing table structure
Appendix 4: Indices

49

Appendix 1:
SQL Client: Reading & Writing

50

SQLite Client: Reading & Writing

To read SQL statements from a text file:

$ cat bookstore.sql
PRAGMA foreign keys = ON;

DROP TABLE IF EXISTS orders;

CREATE TABLE books (
isbn TEXT NOT NULL,
title TEXT,
quantity INTEGER,
PRIMARY KEY (isbn)) ;

INSERT INTO books (isbn, title, quantity)
VALUES ('123', 'The Practice of Programming', 500) ;

51

SQLite Client: Reading & Writing

To read SQL statements from a text file (cont.):

$ sqlite3 bookstore.sqglite
sglite> .read bookstore.sql
sglite> .quit

S

52

SQLite Client: Reading & Writing

To write SQL statements to a text file:

$ sqglite3 bookstore.sqglite

sglite> .output bookstorebackup.sqgl
sglite> .dump

sglite> .quit

$

53

SQLite Client: Reading & Writing

Resulting file:

$ cat bookstorebackup.sql

CREATE TABLE books (

isbn TEXT NOT NULL,

title TEXT,

quantity INTEGER,

PRIMARY KEY (isbn));
INSERT INTO books VALUES('123','The Practice of Programming',500);
INSERT INTO books VALUES('234', 'The C Programming Language', 800) ;
INSERT INTO books VALUES ('345','Algorithms in C',650);
CREATE TABLE authors (

54

Appendix 2:
Fancy SQL Joins

99

Fancy SQL Joins

Recall:
sglite> SELECT * FROM books; sglite> SELECT * FROM orders;
123 | The Practice of Programming|500 1231222120
234 |The C Programming Language]| 800 34512221100
345|Algorithms in C|650 1231111130
sglite> sgqlite>
sglite> SELECT * FROM books, orders;
123 |The Practice of Programming|500|123(222|20
123 |The Practice of Programming|500|345(222]100
123 |The Practice of Programming|500|123(111|30
234 |The C Programming Language|800|123(222|20 ;
234 |The C Programming Language|800|345(1222|100 CarteSIan
234 |The C Programming Language|800|123(111|30 prOChJCt

345|Algorithms in C|650]1231222]20
345|Algorithms in C|650]1345(1222]100
345|Algorithms in C|650]123|111]30

sglite>

56

Fancy SQL Joins

Ordinary SQL join

sglite> SELECT * FROM books, orders WHERE
books.isbn=orders.isbn;

123 | The Practice of Programming|500(|123]111]|30
123 | The Practice of Programming|500[|123]1222]|20
345 |Algorithms in C|650(13451222|100

sglite>

Conceptually, to compute result table:
Compute Cartesian product of books and orders
Retain only those rows in which books.isbn = orders.isbn

57

Fancy SQL Joins

Inner join

sglite> SELECT * FROM books INNER JOIN orders
ON books.isbn=orders.isbn;

123 | The Practice of Programming|500(|123]111]|30
123 | The Practice of Programming|500[|123]1222]|20
345 |Algorithms in C|650(13451222|100

sglite>

Same as ordinary join

Note: No row for book with isbn 234 is present

58

Fancy SQL Joins

Left outer join

books orders

sglite> SELECT * FROM books LEFT OUTER JOIN
orders ON books.isbn=orders.isbn;

123 |The Practice of Programming|500(|123]111]|30
123 | The Practice of Programming|500[|123]1222]|20
234 | The C Programming Language|800] | |

345 |Algorithms in C|650(13451222|100

sglite>

Conceptually, to compute result table:
Compute inner join
Add each book row that is missing, padded with NULL fields

59

Fancy SQL Joins

Right outer join

SELECT * from books
RIGHT OUTER JOIN orders books orders
ON books.isbn = orders.isbn;

Conceptually, to compute result table:
Compute inner join
Add each orders row that is missing, padded with NULL fields

Not supported by SQL.ite
But could use left outer join with tables switched!

60

Fancy SQL Joins

Full outer join

SELECT * from books
FULL OUTER JOIN orders

ON books.isbn = orders.isbn; ek

Conceptually, to compute result table:
Compute inner join
Add each book row that is missing,
padded with NULL fields
Add each orders row that is missing,
padded with NULL fields

Not supported by SQL.ite

orders

61

Fancy SQL Joins

. Note:

- COS 333 assignments do not require outer
joins

- Your COS 333 project probably will not
require outer joins

- But understanding outer joins may help you
to understand inner joins more deeply

62

Appendix 3:
Changing Table Structure

63

Changing Table Structure

ALTER TABLE table specification [, specification]

L]
cee J

sglite> ALTER TABLE books ADD COLUMN price INTEGER;
sglite> .schema books
CREATE TABLE books (

isbn TEXT NOT NULL,

title TEXT,

quantity INTEGER,

price INTEGER,

PRIMARY KEY (isbn));
sglite> SELECT * FROM books;
123 | The Practice of Programming|500 |
234 | The C Programming Language | 800 |
345|Algorithms in C|650|
sglite>

64

Changing Table Structure

Works in standard SQL, but not in SQLite:

sgqlite> ALTER TABLE books DELETE COLUMN price;
Error: near "DELETE": syntax error
sglite>

Works in SQLite:

sglite> ALTER TABLE books RENAME TO books2;
sglite> CREATE TABLE books (
isbn TEXT NOT NULL,
title TEXT,
quantity INTEGER,
PRIMARY KEY (isbn)) ;
sgqlite> INSERT INTO books (isbn, title, quantity)
SELECT isbn, title, quantity from books2;
sglite> DROP TABLE books2;

65

Appendix 4:
Indices

66

Indices

Creating indices:

CREATE INDEX index ON table (field);

sglite> CREATE INDEX books index ON books (isbn);
sglite> .schema books
CREATE TABLE books (

isbn TEXT NOT NULL,

title TEXT,

quantity INTEGER,

PRIMARY KEY (isbn));
CREATE INDEX books index on books (isbn);
sglite>

Pro: Fast search on isbn field of books table
Con: Slow insert of rows into books table
Con: Slow delete of rows from books table

Indices

Dropping indices:

DROP INDEX index;

sglite> drop index books index;

sglite> .schema books

CREATE TABLE books (
isbn TEXT NOT NULL,
title TEXT,
quantity INTEGER,
PRIMARY KEY (isbn));

sglite>

68

