The Python Language (Part 5): Page 1 of 6

copystrings.py (Page 1 of 1) blank (Page 1 of 1)
#!/usr/bin/env python 1: This page is intentionally blank.
#

1
2
3
4: # copystrings.py

5: # Author: Bob Dondero
6.

7

8

9

#

import sys

10: def main():

11:

12: if len(sys.argv) != 3:

13: print (f’usage: python {sys.argv[0]} infile outfile’,
14: file=sys.stderr)

15: sys.exit (1)

16:

17: in_name = sys.argv[1l]

18: out_name = sys.argv[2]

19:

20: try:

21: in_file = open(in_name, mode='r’, encoding='utf-8')
22: out_file = open (out_name, mode='w’, encoding='utf-8')
23

24: #line = in_file.readline()

25: #while line != 77/:

26: # out_file.write(line)

27: # line = in_file.readline()

28

29: for line in in_file:

30: out_file.write(line)

31:

32: out_file.close()

33: in_file.close()

34

35: except Exception as ex:

36: print (f’ {sys.argv[0]}: {ex}’, file=sys.stderr)

37: sys.exit (1)

38:

39: if _ name_ == '__main__':

40: main ()

copystringsfinally.py (Page 1 of 1)

#!/usr/bin/env python

#

copystringsfinally.py
Author: Bob Dondero
#

import sys
def main() :

if len(sys.argv) != 3:

print (f’usage: python {sys.argv[0]} infile outfile’,

file=sys.stderr)
sys.exit (1)

in_name = sys.argv[1l]
out_name = sys.argv[2]

try:
in_file = open(in_name, mode='r’, encoding='utf-8')
try:
out_file = open(out_name, mode='w’, encoding='utf-8')
try:
for line in in_file:
out_file.write(line)
finally:
out_file.close()
finally:

in_file.close()

except Exception as ex:
print (f’ {sys.argv[0]}: {ex}’, file=sys.stderr)
sys.exit (1)
if _ name_ == '_main__':
main ()

The Python Language (Part 5): Page 2 of 6

copystringsfinallybad.py (Page 1 of 1)

1: #!/usr/bin/env python

2

3: #

4: # copystringsfinallybad.py

5: # Author: Bob Dondero

6: #

7:

8: import sys

9:

10: def main():

11:

12: if len(sys.argv) != 3:

13: print (f’usage: python {sys.argv[0]} infile outfile’,
14: file=sys.stderr)

15: sys.exit (1)

16:

17: in_name = sys.argv[1l]

18: out_name = sys.argv[2]

19:

20: try:

21: in_file = open(in_name, mode='r’, encoding='utf-8')
22: out_file = open(out_name, mode='w’, encoding='utf-8')
23: for line in in_file:

24: out_file.write(line)

25:

26: except Exception as ex:

27: print (f’ {sys.argv[0]}: {ex}’, file=sys.stderr)
28: sys.exit (1)

29:

30: finally:

31: out_file.close()

32: in_file.close()

33:

34: if _ name_ == '_main__':

35: main ()

copystringswith.py (Page 1 of 1)

#!/usr/bin/env python

#

copystringswith.py
Author: Bob Dondero

#
import sys
def main() :
if len(sys.argv) != 3:
print (f’usage: python {sys.argv[0]} infile outfile’,

file=sys.stderr)
sys.exit (1)

in_name = sys.argv[1l]
out_name = sys.argv[2]
try:

with open(in_name, mode=’'r’, encoding='utf-8’) as in_file:

with open (out_name, mode=’w’, encoding='utf-8’) as out_file:

for line in in_file:
out_file.write(line)

except Exception as ex:
print (f’ {sys.argv[0]}: {ex}’, file=sys.stderr)
sys.exit (1)
if _ name_ == '_main__':
main ()

The Python Language (Part 5):

linesort.py (Page 1 of

#!/usr/bin/env python

#

1)

Page 3 of 6

linesort.py
Author: Bob Dondero

#
import sys

— -

def main () :

lines = []

for line in sys.stdin:
line = line.rstrip(’\n’)
lines.append(line)

lines.sort ()
for line in lines:
print (line)

or:

lines +=

[line]

if name == '__main
main ()

linesorttim.py (Page 1 of 2)

#!/usr/bin/env python

#

linesorttim.py
Author:
https://www.codespeedy.com/timsort-algorithm-implementation—-in-python/

#

import sys

minrun = 32

def

def

def

InsSort (arr, start,end) :
for i in range(start+l,end+1):
elem = arr[i]
jo=1i-1
while j>=start and elem<arr[j]:
arr[j+1] = arr[j]
j =1
arr[j+1] = elem
return arr

merge (arr, start,mid, end) :
if mid==end:

return arr
first = arr[start:mid+1]
last = arr[mid+l:end+1]

lenl = mid-start+l
len2 = end-mid
indl = 0

ind2 = 0

ind = start

while indl<lenl and ind2<len2:
if first[indl]<last[ind2]:

arr[ind] = first[indl]
indl += 1

else:
arr[ind] = last[ind2]
ind2 += 1

ind += 1

while indl<lenl:
arr[ind] = first[indl]
indl += 1
ind += 1

while ind2<len2:
arr[ind] = last[ind2]
ind2 += 1
ind += 1

return arr

TimSort (arr) :
n = len(arr)

for start in range (0,n,minrun):
end = min(start+minrun-1,n-1)
arr = InsSort (arr,start,end)

curr_size = minrun
while curr_size<n:
for start in range(0,n,curr_size*2):
mid = min(n-1,start+curr_size-1)

The Python Language (Part 5): Page 4 of 6

linesorttim.py (Page 2 of 2)

66: end = min(n-1,mid+curr_size)
67: arr = merge (arr,start,mid, end)
68: curr_size *= 2

69: return arr

70:

71: #

72:

73: def main() :

74: lines = []

75: for line in sys.stdin:

76: line = line.rstrip(’\n’)

77: lines.append(line) # or: lines += [line]
78: TimSort (lines)

79: for line in lines:

80: print (line)

81:

82: # -

83:

84: if _ name_ == '_main__'

85 main ()

concord.py (Page 1 of 1)

#!/usr/bin/env python

#

concord.py
Author: Bob Dondero

#

import sys
import re

#____ - - J— -

def process_line(line, concordance):
line = line.lower ()

re_letters = re.compile(r’ [a-z]+')
words = re_letters.findall (line)

for word in words:
if word in concordance:
concordance [word] += 1

else:
concordance [word] = 1
#___ —
def main|()
concordance = {}
for line in sys.stdin:
process_line (line, concordance)
#for word in concordance:
print (£’ {word}: {concordance[word]}”’)
for word, count in concordance.items () :
print (£’ {word}: {count}’)
#
if _ name_ == '_main__ ':

main ()

The Python Language (Part 5): Page 5 of 6

variadic.py (Page 1 of 1)

#!/usr/bin/env python

#

variadic.py
Author: Bob Dondero

#

def my_func(i, Jj, *args, **kwargs):
print (i)
print (j)

for arg in args:
print (arg)

for key, value in kwargs.items():
print (key, value)

def main() :

my_func(’a’, ’'b’, ’'c’, ’'d’, keyl='e’,

if name == '_main__':
main ()

key2='£")

euclid.py (Page 1 of 1)

The Python Language (Part 5):

euclidstrong.py (Page 1 of 1)

Page 6 of 6

1: #!/usr/bin/env python 1: #!/usr/bin/env python
2 2:
3: # 3: #
4: # euclid.py 4: # euclidstrong.py
5: # Author: Bob Dondero 5: # Author: Bob Dondero
6: # 6: #
7 7:
8: def ged(i, 3J): 8: def ged(i, 3J):
9 9:
10: if (i == 0) and (j == 0): 10: if not isinstance(i, int) or not isinstance(j, int):
11: raise ZeroDivisionError (11: raise TypeError ('ged() arguments must be integers’
12: 'ged(i, j) is undefined if i and j are 0’) 12:
13: i = abs (1) 13: if (1 == 0) and (j == 0):
14: j = abs(J) 14: raise ZeroDivisionError (
15: while j != 0: # Euclid’s algorithm 15: "ged(i, j) is undefined if i and j are 0')
16: i, 3 =3, 1%3 16:
17: return i 17: i = abs (i)
18 18 J = abs(3J)
19: #-—— 19: while j != 0: # Euclid’s algorithm
20: 20: i, 3 =3, 1%3
21: def lem(i, 3J): 21: return i
22: 22:
23: if (1 == 0) or (j == 0): 23: #
24: raise ZeroDivisionError (24:
25: ’lem(i, j) is undefined if i or j is 0') 25: def lem(i, 3J):
26: i = abs (i) 26:
27: j = abs(3j) 27: if not isinstance(i, int) or not isinstance(j, int):
28: return (i // gcd(i, J)) * 3 28: raise TypeError (’lem() arguments must be integers’
29:
30: if (1 == 0) or (j == 0):
31: raise ZeroDivisionError (
32: "lem(i, j) is undefined if i or j is 0')
33:
34: i = abs (1)
35: j = abs(3J)

36: return (i // gcd(i, 3)) * j

