
copystrings.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # copystrings.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9:

10: def main():

11:

12: if len(sys.argv) != 3:

13: print(f’usage: python {sys.argv[0]} infile outfile’,

14: file=sys.stderr)

15: sys.exit(1)

16:

17: in_name = sys.argv[1]

18: out_name = sys.argv[2]

19:

20: try:

21: in_file = open(in_name, mode=’r’, encoding=’utf-8’)

22: out_file = open(out_name, mode=’w’, encoding=’utf-8’)

23:

24: #line = in_file.readline()

25: #while line != ’’:

26: # out_file.write(line)

27: # line = in_file.readline()

28:

29: for line in in_file:

30: out_file.write(line)

31:

32: out_file.close()

33: in_file.close()

34:

35: except Exception as ex:

36: print(f’{sys.argv[0]}: {ex}’, file=sys.stderr)

37: sys.exit(1)

38:

39: if __name__ == ’__main__’:

40: main()

blank (Page 1 of 1)

1: This page is intentionally blank.

The Python Language (Part 5): Page 1 of 6

copystringsfinally.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # copystringsfinally.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9:

10: def main():

11:

12: if len(sys.argv) != 3:

13: print(f’usage: python {sys.argv[0]} infile outfile’,

14: file=sys.stderr)

15: sys.exit(1)

16:

17: in_name = sys.argv[1]

18: out_name = sys.argv[2]

19:

20: try:

21: in_file = open(in_name, mode=’r’, encoding=’utf-8’)

22: try:

23: out_file = open(out_name, mode=’w’, encoding=’utf-8’)

24: try:

25: for line in in_file:

26: out_file.write(line)

27: finally:

28: out_file.close()

29: finally:

30: in_file.close()

31:

32: except Exception as ex:

33: print(f’{sys.argv[0]}: {ex}’, file=sys.stderr)

34: sys.exit(1)

35:

36: if __name__ == ’__main__’:

37: main()

copystringsfinallybad.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # copystringsfinallybad.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9:

10: def main():

11:

12: if len(sys.argv) != 3:

13: print(f’usage: python {sys.argv[0]} infile outfile’,

14: file=sys.stderr)

15: sys.exit(1)

16:

17: in_name = sys.argv[1]

18: out_name = sys.argv[2]

19:

20: try:

21: in_file = open(in_name, mode=’r’, encoding=’utf-8’)

22: out_file = open(out_name, mode=’w’, encoding=’utf-8’)

23: for line in in_file:

24: out_file.write(line)

25:

26: except Exception as ex:

27: print(f’{sys.argv[0]}: {ex}’, file=sys.stderr)

28: sys.exit(1)

29:

30: finally:

31: out_file.close()

32: in_file.close()

33:

34: if __name__ == ’__main__’:

35: main()

The Python Language (Part 5): Page 2 of 6

copystringswith.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # copystringswith.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9:

10: def main():

11:

12: if len(sys.argv) != 3:

13: print(f’usage: python {sys.argv[0]} infile outfile’,

14: file=sys.stderr)

15: sys.exit(1)

16:

17: in_name = sys.argv[1]

18: out_name = sys.argv[2]

19:

20: try:

21: with open(in_name, mode=’r’, encoding=’utf-8’) as in_file:

22: with open(out_name, mode=’w’, encoding=’utf-8’) as out_file:

23: for line in in_file:

24: out_file.write(line)

25:

26: except Exception as ex:

27: print(f’{sys.argv[0]}: {ex}’, file=sys.stderr)

28: sys.exit(1)

29:

30: if __name__ == ’__main__’:

31: main()

linesort.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # linesort.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9:

10: #---

11:

12: def main():

13:

14: lines = []

15: for line in sys.stdin:

16: line = line.rstrip(’\n’)

17: lines.append(line) # or: lines += [line]

18: lines.sort()

19: for line in lines:

20: print(line)

21:

22: #---

23:

24: if __name__ == ’__main__’:

25: main()

The Python Language (Part 5): Page 3 of 6

linesorttim.py (Page 1 of 2)

1: #!/usr/bin/env python

2:

3: #---

4: # linesorttim.py

5: # Author:

6: # https://www.codespeedy.com/timsort-algorithm-implementation-in-python/

7: #---

8:

9: import sys

10:

11: minrun = 32

12:

13: def InsSort(arr,start,end):

14: for i in range(start+1,end+1):

15: elem = arr[i]

16: j = i-1

17: while j>=start and elem<arr[j]:

18: arr[j+1] = arr[j]

19: j -= 1

20: arr[j+1] = elem

21: return arr

22:

23: def merge(arr,start,mid,end):

24: if mid==end:

25: return arr

26: first = arr[start:mid+1]

27: last = arr[mid+1:end+1]

28: len1 = mid-start+1

29: len2 = end-mid

30: ind1 = 0

31: ind2 = 0

32: ind = start

33:

34: while ind1<len1 and ind2<len2:

35: if first[ind1]<last[ind2]:

36: arr[ind] = first[ind1]

37: ind1 += 1

38: else:

39: arr[ind] = last[ind2]

40: ind2 += 1

41: ind += 1

42:

43: while ind1<len1:

44: arr[ind] = first[ind1]

45: ind1 += 1

46: ind += 1

47:

48: while ind2<len2:

49: arr[ind] = last[ind2]

50: ind2 += 1

51: ind += 1

52:

53: return arr

54:

55: def TimSort(arr):

56: n = len(arr)

57:

58: for start in range(0,n,minrun):

59: end = min(start+minrun-1,n-1)

60: arr = InsSort(arr,start,end)

61:

62: curr_size = minrun

63: while curr_size<n:

64: for start in range(0,n,curr_size*2):

65: mid = min(n-1,start+curr_size-1)

linesorttim.py (Page 2 of 2)

66: end = min(n-1,mid+curr_size)

67: arr = merge(arr,start,mid,end)

68: curr_size *= 2

69: return arr

70:

71: #---

72:

73: def main():

74: lines = []

75: for line in sys.stdin:

76: line = line.rstrip(’\n’)

77: lines.append(line) # or: lines += [line]

78: TimSort(lines)

79: for line in lines:

80: print(line)

81:

82: #---

83:

84: if __name__ == ’__main__’:

85: main()

The Python Language (Part 5): Page 4 of 6

concord.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # concord.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9: import re

10:

11: #---

12:

13: def process_line(line, concordance):

14:

15: line = line.lower()

16:

17: re_letters = re.compile(r’[a-z]+’)

18: words = re_letters.findall(line)

19:

20: for word in words:

21: if word in concordance:

22: concordance[word] += 1

23: else:

24: concordance[word] = 1

25:

26: #---

27:

28: def main():

29:

30: concordance = {}

31:

32: for line in sys.stdin:

33: process_line(line, concordance)

34:

35: #for word in concordance:

36: # print(f’{word}: {concordance[word]}’)

37:

38: for word, count in concordance.items():

39: print(f’{word}: {count}’)

40:

41: #---

42:

43: if __name__ == ’__main__’:

44: main()

variadic.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # variadic.py

5: # Author: Bob Dondero

6: #---

7:

8: def my_func(i, j, *args, **kwargs):

9: print(i)

10: print(j)

11: for arg in args:

12: print(arg)

13: for key, value in kwargs.items():

14: print(key, value)

15:

16: def main():

17: my_func(’a’, ’b’, ’c’, ’d’, key1=’e’, key2=’f’)

18:

19: if __name__ == ’__main__’:

20: main()

The Python Language (Part 5): Page 5 of 6

euclid.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # euclid.py

5: # Author: Bob Dondero

6: #---

7:

8: def gcd(i, j):

9:

10: if (i == 0) and (j == 0):

11: raise ZeroDivisionError(

12: ’gcd(i,j) is undefined if i and j are 0’)

13: i = abs(i)

14: j = abs(j)

15: while j != 0: # Euclid’s algorithm

16: i, j = j, i%j

17: return i

18:

19: #---

20:

21: def lcm(i, j):

22:

23: if (i == 0) or (j == 0):

24: raise ZeroDivisionError(

25: ’lcm(i,j) is undefined if i or j is 0’)

26: i = abs(i)

27: j = abs(j)

28: return (i // gcd(i, j)) * j

euclidstrong.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # euclidstrong.py

5: # Author: Bob Dondero

6: #---

7:

8: def gcd(i, j):

9:

10: if not isinstance(i, int) or not isinstance(j, int):

11: raise TypeError(’gcd() arguments must be integers’)

12:

13: if (i == 0) and (j == 0):

14: raise ZeroDivisionError(

15: ’gcd(i,j) is undefined if i and j are 0’)

16:

17: i = abs(i)

18: j = abs(j)

19: while j != 0: # Euclid’s algorithm

20: i, j = j, i%j

21: return i

22:

23: #---

24:

25: def lcm(i, j):

26:

27: if not isinstance(i, int) or not isinstance(j, int):

28: raise TypeError(’lcm() arguments must be integers’)

29:

30: if (i == 0) or (j == 0):

31: raise ZeroDivisionError(

32: ’lcm(i,j) is undefined if i or j is 0’)

33:

34: i = abs(i)

35: j = abs(j)

36: return (i // gcd(i, j)) * j

The Python Language (Part 5): Page 6 of 6

