
The Python Language
(Part 5)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– A subset of Python...
– That is appropriate for COS 333...
– Through example programs

2

Agenda

• Files
• The “with” statement
• Arrays
• Associative arrays

3

Files

• See copystrings.py

4

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python copystrings.py hamlet.txt hamletb.txt
$ cat hamletb.txt
to be
or not to be
that is
the question
$

See Appendix 1 if you’re not familiar with character encodings

Agenda

• Files
• The “with” statement
• Arrays
• Associative arrays

5

The “with” Statement

• Consider copystrings.py
• Problem:

6

in_file = open(…)
…
…
…
in_file.close()

What if an exception is
thrown here???

The “with” Statement

• Solution 1:
– try…finally statement

7

in_file = open(…)
try:
 …
 …
 …
finally:
 in_file.close()

Then this certainly
will be executed “on
the way out”

If this is entered...

The “with” Statement

• See copystringsfinally.py

8

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python copystringsfinally.py hamlet.txt hamletb.txt
$ cat hamletb.txt
to be
or not to be
that is
the question
$

The “with” Statement

• See copystringsfinallybad.py

9

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python copystringsfinallybad.py hamlet.txt hamletb.txt
$ cat hamletb.txt
to be
or not to be
that is
the question
$

Note: Code deviates from pattern, and is flawed

The “with” Statement

• Solution 2:
– with statement

10

with open(…) as in_file:
 …
 …
 …

If this is entered, then
in_file.close() certainly will
be executed on the way out

The “with” Statement

• See copystringswith.py

11

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python copystringswith.py hamlet.txt hamletb.txt
$ cat hamletb.txt
to be
or not to be
that is
the question
$

Agenda

• Files
• The “with” statement
• Arrays
• Associative arrays

12

Arrays

• Generic term: array

13

A data structure consisting of a
collection of elements…, each
identified by at least one array
index or key. An array is stored
such that the position of each
element can be computed from its
index tuple by a mathematical
formula.
 – Wikipedia

Arrays

• Python term: list
– A dynamically expanding (doubling) array of

object references

14

Arrays

• List fundamentals:

15

$ python
>>> a = ['Ruth', 'Gehrig', 'Mantle']
>>> a[1]
'Gehrig'
>>> a[1] = 'DiMaggio'
>>> a
['Ruth', 'DiMaggio', 'Mantle']
>>> a.append('Jeter')
>>> a
['Ruth', 'DiMaggio', 'Mantle', 'Jeter']
>>> 'Mantle' in a
True
>>> 'Berra' in a
False
>>> quit()
$

Arrays

• Python term: tuple
– An immutable list

16

Arrays

• Tuple fundamentals:

17

$ python
>>> t = ('Ruth', 'Gehrig', 'Mantle')
>>> t[1]
'Gehrig'
>>> t[1] = 'DiMaggio'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t
('Ruth', 'Gehrig', 'Mantle')

Continued on the next slide

Arrays

• Tuple fundamentals (cont.):

18

>>> t.append('Jeter')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'
>>> t
('Ruth', 'Gehrig', 'Mantle')
>>> 'Mantle' in t
True
>>> 'Berra' in t
False
>>> quit()

Continued from the previous slide

Arrays

• See linesort.py

19

Elapsed wall clock time: 1.0 sec

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python linesort.py < hamlet.txt
or not to be
that is
the question
to be
$

$ cat pride8.txt
...
$ python linesort.py < pride8.txt
...
$

Arrays

• See linesorttim.py

20

Elapsed wall clock time: 1.5 sec

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python linesorttim.py < hamlet.txt
or not to be
that is
the question
to be
$

$ cat pride8.txt
...
$ python linesorttim.py < pride8.txt
...
$

Agenda

• Files
• The “with” statement
• Arrays
• Associative arrays

21

Associative Arrays

• Generic term: associative array

22

An abstract data type composed of
a collection of (key, value) pairs,
such that each possible key
appears at most once in the
collection.
 – Wikipedia

Associative Arrays

• Python term: dict
– An associative array implemented as a hash

table

23

Associative Arrays

24

$ python
>>> aa = {'Ruth': 3, 'Gehrig': 4, 'Mantle': 7}
>>> aa['Gehrig']
4
>>> aa['Gehrig'] = 5
>>> aa
{'Ruth': 3, 'Gehrig': 5, 'Mantle': 7}

Dict fundamentals:

Continued on the next slide

Associative Arrays

25

>>> aa.get('Gehrig')
5
>>> aa['Jeter']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Jeter'
>>> aa.get('Jeter')
>>> aa.get('Jeter', 2)
2
>>> aa['Jeter'] = 2
>>> aa
{'Ruth': 3, 'Gehrig': 5, 'Mantle': 7, 'Jeter': 2}
>>> 'Gehrig' in aa
True
>>> 'Berra' in aa
False
>>> quit()
$

Dict fundamentals:

Returns
the
default value:
None

Continued from the previous slide

Associative Arrays

• See concord.py

26

$ cat pride8.txt
...
$ python concord.py < pride8.txt
chapter: 488
i: 16632
it: 12304
is: 6872
a: 15672
truth: 216
universally: 24
acknowledged: 160
...
whittingham: 8
co: 8
tooks: 8
chancery: 8
$

$ cat hamlet.txt
to be
or not to be
that is
the question
$ python concord.py < hamlet.txt
to: 2
be: 2
or: 1
not: 1
that: 1
is: 1
the: 1
question: 1
$

Associative Arrays

• See concord.py (cont.)

27

Arg to re.compile() Meaning

'[a-z]' Used to find a lower-case
letter.

'[a-z]+' Used to find a sequence
of 1 or more lower-case
letters.

r'[a-z]+' A raw string literal.
Backslash in string literal
has no special meaning.
Here unnecessary.

• See concord.py (cont.)
$ python concord.py < pride8.txt | sort -n -k 2 -r | head -10
the: 34880
to: 33456
of: 29040
and: 28736
her: 17840
i: 16632
a: 15672
in: 15040
was: 14784
she: 13704
$

Associative Arrays

28

Elapsed wall clock time: 0.77 sec

$ python
>>> help(str)
>>> help(tuple)
>>> help(list)
>>> help(dict)
>>> quit()
$

For More Information

29

For more information:

Date: Sun, 1 Jan 2006 13:18:08 -0800
From: Rob 'Commander' Pike <r@google.com>
To: Brian Kernighan <bwk@CS.Princeton.EDU>

python is a very easy language. i think it's actually a
good choice for some things. awk is perfect for a line
or two, python for a page or two. both break down
badly when used on larger examples, although python
users utterly refuse to admit its weaknesses for
large-scale programming, both in syntax and efficiency.

 -rob

Python Commentary

30

Lecture Summary

• In this lecture we covered these aspects
of Python:
– Files
– Arrays
– Associative arrays

31

Lecture Series Summary
• In this lecture series we covered:

– Subset of Python...
– That is appropriate for COS 333...
– Through example programs

• See also:
– Appendix 1: Character Encodings
– Appendix 2: Iterable Classes
– Appendix 3: Variadic Functions/Methods
– Appendix 4: Duck Typing
– Appendix 5: Regular Expressions
– Appendix 6: The Python Debugger

32

More Information

• The COS 333 Lectures web page
provides references to supplementary
information

33

Appendix 1:
Character Encodings

34

Character Encodings

• Unicode
– Maps each character to a number

• Character encoding
– Maps each such number to the byte(s) which

represent it

35

Character Encodings

36

Encoding Fixed/
Variable
Width

Bytes

ASCII Fixed 1 (7 bits)
Latin-1 Fixed 1
UCS-2 Fixed 2
UTF-32 Fixed 4
UTF-8 Variable 1, 2, 3, or 4

Common character encodings:

Character Encodings
Character Unicode ASCII Latin-1 UCS-2 UTF-32 UTF-8

space 0020 20 20 0020 00000020 20

! 0021 21 21 0021 00000021 21

0 0030 30 30 0030 00000030 30

A 0041 41 41 0041 00000041 41

a 0061 61 61 0061 00000061 61

a with
grave

00e0 e0 00e0 000000e0 e0

Greek
small pi

03c0 03c0 000003c0 cf80

Double
prime

2033 2033 00002033 e280b3

Aegean
number
2000

10123 00010123 f09084a3

37

Aside: Python str Class

• Python str class
– An object of class str is a sequence of 0 or

more characters
– Internal encoding: Latin-1 | UCS-2 | UTF-32

38

Example Python Literal Internally

abc 'abc' 61 62 63

abπc 'ab\u03c0c' 00 61 00 62 03 C0 00 63

Aside: Python bytes Class

• Python bytes class
– An object of class bytes is a sequence of 0

or more bytes
– Internal encoding: None

39

Example Python Literal Internally

61 62 63 b'\x61\x62\x63' 61 62 63

61 62 63 b'abc' 61 62 63

Appendix 2:
Iterable Classes

40

Iterable Classes

• Python iterable classes

41

Class Description of Object of that Class

str An immutable sequence of characters

bytes An immutable sequence of bytes

list A sequence of object references

tuple An immutable sequence of object references

set A collection of object references that contains no duplicate
references

dict An associative array of object references implemented as a
hash table

file A persistent sequence of bytes

str
 str1 = 'hi'
 str2 = "hi"
 str3 = r'hi' # raw string

bytes
 bytes1 = b'hi'
 bytes2 = b"hi"
 bytes3 = rb'hi'

list
 list1 = [obj1, obj2, ...]

tuple
 tuple1 = (obj1, obj2, ...)
 tuple2 = (obj1,) ← hack

Iterable Classes

42

Creating iterable objects

set
 set1 = {obj1, obj2, ...}
 # tests for object ref equality

dict
 dict1 = {keyobj1:valueobj1, keyobj2:valueobj2, ...}

file
 fileobj = open('filename', mode='somemode')
 # somemode: r, rb, w, wb, ...

Iterable Classes

43

Creating iterable objects (cont.)

Iterable Classes

44

Some str Methods
str1 = str2.__add__(str3) # str1 = str2 + str3

bool1 = str1.__eq__(str2) # bool1 = str1 == str2

bool1 = str1.__ne__(str2) # bool1 = str1 != str2

bool1 = str1.__lt__(str2) # bool1 = str1 < str2

bool1 = str1.__gt__(str2) # bool1 = str1 > str2

bool1 = str1.__le__(str2) # bool1 = str1 <= str2

bool1 = str1.__ge__(str2) # bool1 = str1 >= str2

int1 = str1.__len__() # int1 = len(str1)

str1 = str2.__getitem__(int1) # str1 = str2[int1]

bool1 = str1.__contains__(str2) # bool1 = str2 in str1

Iterable Classes

45

Some str Methods (cont.)
bool1 = str1.startswith(str2)

bool1 = str1.endswith(str2)

bool1 = str1.isspace()

bool1 = str1.isalnum()

bool1 = str1.isalpha()

bool1 = str1.isdecimal()

bool1 = str1.isdigit()

bool1 = str1.islower()

bool1 = str1.isnumeric()

bool1 = str1.isupper()

str1 = str2.upper()

str1 = str2.lower()

Iterable Classes

46

Some str Methods (cont.)
list1 = str1.split(str2)

str1 = str2.replace(str3, str4)

str1 = str2.strip()

str1 = str2.lstrip()

str1 = str2.rstrip()

int1 = str1.find(str2)

int1 = str1.rfind(str2)

str1 = str2.join(list1) (See note)

bytes1 = str1.encode(encoding)

Note:
'/'.join(['hello', 'there', 'world']) =>
'hello/there/world'

Iterable Classes

47

Some list Methods
list1 = list2.__add__(list3) # list1 = list2 + list3

bool1 = list1.__contains__(obj1) # bool1 = obj1 in list1

list1.__delitem__(int1) # del(list1[int1])

obj1 = list1.__getitem__(int1) # obj1 = list1[int1]

list1.__iadd__(list2) # list1 += list2

int1 = list1.__len__() # int1 = len(list1)

list1.__setitem__(int1, obj1) # list1[int1] = obj1

Iterable Classes

48

Some list Methods (cont.)
list1.append(obj1)

list1.clear()

list1 = list2.copy()

int1 = list1.index(obj1)

list1.insert(obj1, int1)

obj1 = list1.pop()

list1.remove(obj1)

list1.reverse()

list1.sort()

Iterable Classes

49

Some dict Methods
bool1 = dict1.__contains__(obj1) # bool1 = obj1 in dict1

dict1.__delitem(obj1) # del(dict1[obj1])

obj1 = dict1.__getitem__(obj2) # obj1 = dict1[obj2]

int1 = dict1.__len__() # int1 = len(dict1)

dict1.__setitem__(obj1, obj2) # dict1[obj1] = obj2

dict1.clear()

dict1 = dict2.copy()

list1 = dict1.keys()

list1 = dict1.items()

list1 = dict1.values()

Iterable Classes

50

Some file Methods
file1.close()

file1.flush()

str1 = file1.read()

bool1 = file1.readable()

str1 = file1.readline()

list1 = file1.readlines()

fool1 = file1.writable()

file1.write(str1)

file1.writelines(list1)

Appendix 3:
Variadic Functions/Methods

51

Variadic Functions/Methods

• Variadic function/method:
– A function/method that can be called with a

variable number of arguments
– Example: printf() in C

• printf("hello");
• printf("The answer is %d", 5);
• printf("The answers are %d and %d",
5, 10);

52

Variadic Functions/Methods

• Question
– How to define variadic functions/methods in

Python?
• Answer

– *args and **kwargs…

53

Variadic Functions/Methods

• See variadic.py

54

$ python variadic.py
a
b
c
d
key1 e
key2 f
$

Variadic Functions/Methods

• See variadic.py (cont.)

55

Parameter Referenced Object
i 'a'

j 'b'

args ['c', 'd']

kwargs {'key1':'e', 'key2':'f'}

Appendix 4:
Duck Typing

56

Duck Typing

• Observation:
– Python uses duck typing

57

“When I see a bird that walks like a
duck and swims like a duck and
quacks like a duck, I call that bird a
duck.”

-- James Whitcomb Riley

Duck Typing

• Example: Recall euclid.py
– i and j parameters of gcd() can reference

objects of any class, as long as they can be:
• Operands of ==
• Arguments to abs()
• Operands of !=
• Operands of %

58

Duck Typing

59

Language Object
references
have types?

Objects
have types?

Language
classification

C yes no weakly
typed

Java yes yes strongly
typed

Python no yes dynamically
(duck) typed

Duck Typing

• Is duck typing good or bad (vs. strong
typing) ?

• See euclidstrong.py
– Which is better, euclid.py or euclidstrong.py?

60

Duck Typing

• Style 1: Don’t validate parameter types
– Validating parameter types is constraining

and slow
– So euclid.py is better

• Style 2: Validate parameter types
– Validating parameter types is safe
– So euclidstrong.py is better

• We’ll use Style 1

61

Duck Typing

• Commentary
– Small projects:

• Maybe need not validate parameter types
– Large projects:

• Maybe should validate parameter types

62

Duck Typing

• Commentary
– But if you feel the need to validate parameter

types, then why are you using Python???

63

Appendix 5:
Regular Expressions

64

Regular Expressions

• Used widely
– Java (string manipulation)
– Python (string manipulation)
– Unix grep command (file searching)
– Bash shell (filename wildcards)
– SQL like clauses (querying databases)

• See upcoming Database Programming lectures
– …

65

RE Matches
thing thing anywhere in string
^thing thing at beginning of string
thing$ thing at end of string
^thing$ string that contains only thing
^ any string, even empty
^$ empty string
. non-empty, i.e. the first char in string
thing.$ thing plus any char at end of string
thing\.$ thing. at end of string
\\thing\\ \thing\ anywhere in string
[tT]hing thing or Thing anywhere in string
thing[0-9] thing followed by one digit
thing[^0-9] thing followed by a non-digit
thing[0-9][^0-9] thing followed by digit, then non-digit
thing1.*thing2 thing1 then any (or no) text then thing2
^thing1.*thing2$ thing1 at beginning and thing2 at end

Thanks to Prof. Brian Kernighan

Regular Expressions

66

Thanks to Prof. Brian Kernighan

Regular Expressions

• What do these match?
– a.*e.*i.*o.*u

• Try with grep command and
/usr/share/dict/words file

– ^[^aeiou]*a[^aeiou]*e[^aeiou]*i[^
aeiou]*o[^aeiou]*u[^aeiou]*$

• Try with grep command and
/usr/share/dict/words file

67

Regular Expressions

• Implementations vary
– See Mastering Regular Expressions (Jeffrey

Friedl) book
• ~500 pages!

• In Python…

68

RE Matches
X the character X, except for metacharacters
\X the character X, where X is a metacharacter
. any character except \n
 (use DOTALL as argument to compile() to match \n too)
^ start of string
$ end of string
XY X followed by Y
X* zero or more cases of X (X*? is the same, but non-greedy)
X+ one or more cases of X (X+? is the same, but non-greedy)
X? zero or one case of X (X?? is the same, but non-greedy)
[...] any one of ...
[^...] any character other than ...
[X-Y] any character in the range X through Y
X|Y X or Y
(...) ..., and indicates a group

Precedence: * + ? higher than concatenation, which is higher than |

Regular Expressions

69

RE Matches
\t tab
\v vertical tab
\n newline
\r return
\f form feed
\a alert
\e escape
\\ backslash
\A empty string at start of given string
\b empty string, but only at start or end of a word
\B empty string, but not at start or end of a word
\d a digit
\D a non-digit
\s a white space character, that is, [\t\n\r\f\v]
\S a non-white space character
\w an alphanumeric character, that is, [a-zA-Z0-9_]
\W a non-alphanumeric character
\Z the empty string at the end of the given string

Regular Expressions

70

Regular Expressions

• What kinds of strings do these regular
expressions match?
– [-+]?([0-9]+\.?[0-9]*|\.[0-9]+)([
Ee][-+]?[0-9]+)?

– /*.*?*/ (use with DOTALL)
• Why the question mark?
• Why DOTALL?

• Commentary: Regular expressions are
write-only!!!

71

Regular Expressions

• Some theory:
– Regular expressions have the same power

as deterministic finite state automata
(DFAs)

– A regular expression defines a regular
language

– A DFA also defines a regular language

72

ab*c
a c

a[bc]+d
a b,c

b,c

d

b

Regular Expressions

73

Appendix 6:
The Python Debugger

74

The Python Debugger

• pdb debugger is bundled with Python

• To use pdb:

75

$ python –m pdb somefile.py

Some pdb Commands
• help
• break functionOrMethod
• break filename:linenum
• run
• list
• next
• step
• continue
• print expr
• where
• quit

The Python Debugger

76
Note similarities with gdb

The Python Debugger

• Common commands have abbreviations:
h, b, r, l, n, s, c, p, w, q

• Blank line means repeat the same
command

• Beware: Cannot easily read from stdin

77

