The Python Language
(Part 5)

Copyright © 2026 by
Robert M. Dondero, Ph.D.
Princeton University

Objectives

. We will cover:

- A subset of Python...
- That is appropriate for COS 333...
- Through example programs

Agenda

. Files

. The "with” statement

. Arrays
. Associative arrays

Files

. See copystrings.py

$ cat hamlet. txt
to be

or not to be

that is

the question

$ python copystrings.py hamlet.txt hamletb. txt
$ cat hamletb. txt
to be

or not to be

that is

the question

S

See Appendix 1 if you're not familiar with character encodings

Agenda

. Files

. The “with” statement

. Arrays
. Associative arrays

The "with” Statement

. Consider copystrings.py
. Problem:

in file = open(..)

What if an exception is
thrown here???

in file.close()

The "with” Statement

. Solution 1:

- try..finally statement

in file = open(..)
try:

finally:
in file.close()

e

—

If this is entered...

Then this certainly
will be executed “on
the way out”

The "with” Statement

. See copystringsfinally.py

S cat hamlet. txt
to be

or not to be

that 1is

the question

$ python copystringsfinally.py hamlet. txt hamletb. txt
S cat hamletb. txt
to be

or not to be

that 1is

the question

$

The "with” Statement

. See copystringsfinallybad.py

$ cat hamlet. txt
to be

or not to be

that is

the question

$ python copystringsfinallybad.py hamlet.txt hamletb. txt
$ cat hamletb. txt
to be

or not to be

that is

the question

S

Note: Code deviates from pattern, and is flawed

The "with” Statement

. Solution 2:

- with statement

———

=

with open(.) as in file:

If this is entered, then
in_file.close() certainly will
be executed on the way out

10

The "with” Statement

. See copystringswith.py

S cat hamlet. txt
to be

or not to be

that 1is

the question

$ python copystringswith.py hamlet.txt hamletb. txt
S cat hamletb. txt
to be

or not to be

that 1is

the question

$

11

Agenda

. Files

. The "with” statement

. Arrays
. Associative arrays

12

Arrays

. Generic term: array

A data structure consisting of a
collection of elements..., each
identified by at least one array
iIndex or key. An array is stored
such that the position of each
element can be computed from its
Index tuple by a mathematical
formula.

— Wikipedia

13

Arrays

. Python term: list

- A dynamically expanding (doubling) array of
object references

14

Arrays

. List fundamentals:

S python

>>> a[l]

'Gehrig'

>>> a[l] = 'DiMaggio’

>>> a

['"Ruth', 'DiMaggio', 'Mantle']
>>> a.append('Jeter')

>>> a

['"Ruth', 'DiMaggio', 'Mantle',
>>> 'Mantle' in a

True

>>> 'Berra' in a

False

>>> quit ()

$

>>> a = ['Ruth', 'Gehrig', 'Mantle']

'Jeter']

15

Arrays

. Python term: tuple
- An immutable list

16

Arrays

. Tuple fundamentals:

$ python

>>> t = ('Ruth', 'Gehrig', 'Mantle')
>>> t[1]

'Gehrig'

>>> t[1l] = 'DiMaggio'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> t
('"Ruth', 'Gehrig', 'Mantle')

Continued on the next slide

Arrays

. Tuple fundamentals (cont.):

Continued from the previous slide

>>> t.append('Jeter')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'tuple' object has no attribute

>>> t

('"Ruth', 'Gehrig', 'Mantle')

>>> 'Mantle' in t

True

>>> 'Berra' in t

False

>>> quit ()

'append'’

18

Arrays

. See linesort.py

S cat hamlet. txt

to be

or not to be

that is

the question

$ python linesort.py < hamlet. txt
or not to be

that is . $ cat pride8.txt

the question

to be L i)

5 $ python linesort.py < pride8.txt
$

Elapsed wall clock time: 1.0 sec

19

Arrays

. See linesorttim.py

S cat hamlet. txt
to be

or not to be
that is

the question

$ python linesorttim.py < hamlet. txt

or not to be
that is

the question
to be

$

$ cat pride8.txt

$ python linesorttim.py < pride8. txt

S

Elapsed wall clock time: 1.5 sec

20

Agenda

. Files

. The "with” statement

. Arrays
. Associative arrays

21

Associative Arrays

. Generic term: associative array

An abstract data type composed of
a collection of (key, value) pairs,
such that each possible key
appears at most once in the
collection.

— Wikipedia

22

Associative Arrays

. Python term: dict

- An associative array implemented as a hash
table

23

Associative Arrays

Dict fundamentals:

S python

>>> aa = {'Ruth': 3, 'Gehrig': 4, 'Mantle': 7}
>>> aal['Gehrig']

4

>>> aa['Gehrig'] = 5

>>> aa

{'"Ruth': 3, 'Gehrig': 5, 'Mantle': 7}

Continued on the next slide

Associative Arrays

Dict fundamentals:
Continued from the previous slide

>>> aa.get('Gehrig')

5

>>> aal['Jeter']

Traceback (most recent call last):

File "<stdin>", line 1, in <module> Returns
KeyError: 'Jeter'
>>> aa.get('Jeter') =E— the
>>> aa.get('Jeter', 2) default value:
2
>>> aal['Jeter'] = 2 None
>>> aa

{'"Ruth': 3, 'Gehrig': 5, 'Mantle': 7, 'Jeter': 2}
>>> 'Gehrig' in aa

True

>>> 'Berra' in aa

False

>>> quit()

$

25

Associative Arrays

. See concord.py

$ cat hamlet. txt

to be

or not to be

that is

the question

S python concord.py < hamlet. txt

to: 2

be: 2

or: 1

not: 1
that: 1

is: 1

the: 1
question: 1
$

$ cat prideS8.txt

$ python concord.py < pride8.txt
chapter: 488

1i: 16632

it: 12304

is: 6872

a: 15672

truth: 216

universally: 24

acknowledged: 160

whittingham: 8

co: 8
tooks: 8
chancery: 8
$

26

Associative Arrays

. See concord.py (cont.)

"Ta-z]" Used to find a lower-case
letter.

'la-z]+" Used to find a sequence
of 1 or more lower-case
letters.

r'la-z]+' A raw string literal.

Backslash in string literal
has no special meaning.
Here unnecessary. 57

Associative Arrays

. See concord.py (cont.)

$ python concord.py < pride8.txt | sort -n -k 2 -r | head -10
the: 34880
to: 33456
of: 29040
and: 28736
her: 17840
i: 16632
a: 15672
in: 15040
was: 14784
she: 13704
$

Elapsed wall clock time: 0.77 sec

28

For More Information

For more information:

$ python

>>> help (str)
>>> help (tuple)
>>> help(list)
>>> help (dict)
>>> quit ()

S

29

Python Commentary

Date: Sun, 1 Jan 2006 13:18:08 -0800
From: Rob 'Commander’' Pike <r@google.com>
To: Brian Kernighan <bwk@CS.Princeton.EDU>

python is a very easy language. i think it's actually a
good choice for some things. awk is perfect for a line
or two, python for a page or two. both break down
badly when used on larger examples, although python
users utterly refuse to admit its weaknesses for
large-scale programming, both in syntax and efficiency.

-rob

30

Lecture Summary

. In this lecture we covered these aspects
of Python:

- Files

- Arrays

- Associative arrays

31

Lecture Series Summary

. In this lecture series we covered:
- Subset of Python...
- That is appropriate for COS 333...
- Through example programs

. See also:
- Appendix 1: Character Encodings
- Appendix 2: lterable Classes
- Appendix 3: Variadic Functions/Methods
- Appendix 4: Duck Typing
- Appendix §: Regular Expressions
- Appendix 6: The Python Debugger

32

More Information

. The COS 333 Lectures web page
provides references to supplementary
information

33

Appendix 1:
Character Encodings

34

Character Encodings

. Unicode

- Maps each character to a number

. Character encoding

- Maps each such number to the byte(s) which
represent it

35

Character Encodings

Common character encodings:

Encoding Fixed/ Bytes

Variable
Width
ASCII Fixed 1 (7 bits)
Latin-1 Fixed 1
UCS-2 Fixed 2
UTF-32 Fixed 4
UTF-8 Variable |1, 2, 3, or4

36

Character Encodings

Character

Unicode

ASCII

Latin-1

UTF-32

space 0020 20 20 0020 00000020 | 20

! 0021 21 21 0021 00000021 | 21

0 0030 30 30 0030 00000030 | 30

A 0041 41 41 0041 00000041 | 41

a 0061 61 61 0061 00000061 | 61

a with 00e0 e0 00e0 000000e0 | e0
grave

Greek 03c0 03c0 000003c0O | c£80
small pi

Double 2033 2033 00002033 | e280b3
prime

Aegean 10123 00010123 | £09084a3
number

2000

Aside: Python str Class

. Python str class

- An object of class str is a sequence of O or
more characters

- Internal encoding: Latin-1 | UCS-2 | UTF-32

m Python Literal | Internally

6l 62 63
abtrc "ab\u03cOc' 00 61 00 62 03 CO 00 63

38

Aside: Python bytes Class

. Python bytes class

- An object of class bytes is a sequence of O
or more bytes

- Internal encoding: None

m Python Literal Internally

61 62 63 b'\x61\x62\x63" 61 62 63
616263 b'abc' 61 62 63

39

Appendix 2:
lterable Classes

40

lterable Classes

- Python iterable classes

Description of Object of that Class

str
bytes
list
tuple

set

dict

file

An immutable sequence of characters

An immutable sequence of bytes
A sequence of object references
An immutable sequence of object references

A collection of object references that contains no duplicate
references

An associative array of object references implemented as a
hash table

A persistent sequence of bytes

41

lterable Classes

Creating iterable objects

str

strl = 'hi'

str2 = "hi"

str3 = r'hi' # raw string
bytes

bytesl = b'hi'
bytes2 = b"hi"
bytes3 = rb'hi'

list

listl = [objl, obj2, ...]
tuple

tuplel = (objl, obj2, ...)

tuple2 = (objl,) — hack

lterable Classes

Creating iterable objects (cont.)

set

setl = {objl, obj2, ...}

tests for object ref equality
dict

dictl = {keyobjl:valueobjl, keyobj2:valueobj2,
file

fileobj] = open('filename', mode='somemode')
somemode: r, rb, w, wb,

.}

43

lterable Classes

strl = str2. add (str3) # strl = str2 + str3
booll = strl. eq (str2) # booll = strl == str2
booll = strl. ne (str2) # booll = strl != str2
booll = strl. 1t (str2) # booll = strl < str2
booll = strl. gt (str2) # booll = strl > str2
booll = strl. le (str2) # booll = strl <= str2
booll = strl. ge (str2) # booll = strl >= str2
intl = strl. len () # intl = len(strl)
strl = str2. getitem (intl) # strl = str2[intl]
booll = strl. contains (str2) # booll = str2 in strl

lterable Classes

booll strl.startswith(str2)

booll = strl.endswith(str2)

booll = strl.isspace()

booll = strl.isalnum{()

booll = strl.isalpha/()

booll = strl.isdecimal ()

booll = strl.isdigit ()

booll = strl.islower ()

booll = strl.isnumeric/()

booll = strl.isupper/()

strl = str2.upper|()

strl = str2.lower ()

lterable Classes

listl = strl.split(str2)

strl = str2.replace(str3, str4)

strl = str2.strip()

strl = str2.1lstrip()

strl = str2.rstrip()

intl = strl.find(str2)

intl = strl.rfind(str2)

strl = str2.join(listl) (See note)

bytesl = strl.encode (encoding)
Note:
'/'".join(['hello', 'there', 'world']) =>

'hello/there/world’

lterable Classes

listl = list2. add (list3) # listl = list2 + 1list3
booll = listl. contains (objl) # booll = objl in listl
listl. delitem (intl) # del (listl[intl])

objl = listl. getitem (intl) # objl = listl[intl]

listl. 1iadd (list2) listl += list?2

intl = listl. len ()

intl = len(listl)

listl. setitem (intl, objl) # 1listl[intl] = objl

lterable Classes

listl.append(objl)

listl.clear ()

listl = list2.copy/()

intl = listl.index(objl)

listl.insert (objl, intl)

objl = listl.pop ()

listl.remove (objl)

listl.reverse()

listl.sort()

48

lterable Classes

booll = dictl. contains (objl) # booll = objl in dictl

dictl. delitem(objl) # del(dictl[objl])
objl = dictl. getitem (0obj2) # objl = dictl[obj2]
intl = dictl. 1len () # 1intl = len(dictl)
dictl. setitem (objl, ob3j2) # dictl[objl] = obj2

dictl.clear ()

dictl = dict2.copy()

listl

dictl.keys ()

listl dictl.items ()

listl = dictl.values/()

lterable Classes

filel.close()

filel.flush()

strl = filel.read()

booll = filel.readable ()

strl = filel.readline ()

listl = filel.readlines|()

fooll = filel.writable()

filel.write(strl)

filel.writelines(listl)

Appendix 3:
Variadic Functions/Methods

51

Variadic Functions/Methods

. Variadic function/method:

- A function/method that can be called with a
variable number of arguments
- Example: printf () iInC
- printf("hello");
- printf ("The answer 1s %d", 5);

« printf ("The answers are %d and %d",
5, 10)7

52

Variadic Functions/Methods

. Question

- How to define variadic functions/methods in
Python?

. Answer

- *args and **kwargs...

53

Variadic Functions/Methods

. See variadic.py

$ python variadic.py
a

b

C

d

keyl e

key2 £
S

54

Variadic Functions/Methods

. See variadic.py (cont.)

Parameter Referenced Object

args ['e', 'd']

kwargs {'keyl':'e', 'key2':'f'}

Appendix 4:
Duck Typing

56

Duck Typing

. Observation:
- Python uses duck typing

“When | see a bird that walks like a
duck and swims like a duck and
quacks like a duck, | call that bird a
duck.”

-- James Whitcomb Riley

S7

Duck Typing

. Example: Recall euclid.py

- i and j parameters of gcd () can reference
objects of any class, as long as they can be:
- Operands of ==
- Arguments to abs ()
- Operands of ! =
- Operands of %

58

Duck Typing

Language Object Objects Language

references | have types? | classification
have types?

C yes no weakly
typed

Java yes yes strongly
typed

Python no yes dynamically
(duck) typed

59

Duck Typing

. Is duck typing good or bad (vs. strong
typing) ?

. See euclidstrong.py
- Which is better, euclid.py or euclidstrong.py?

60

Duck Typing

. Style 1: Don't validate parameter types

- Validating parameter types is constraining
and slow

- So euclid.py is better

. Style 2: Validate parameter types
- Validating parameter types is safe
- So euclidstrong.py is better

. We'll use Style 1

61

Duck Typing

. Commentary
- Small projects:

- Maybe need not validate parameter types
- Large projects:

- Maybe should validate parameter types

62

Duck Typing

. Commentary

- But if you feel the need to validate parameter
types, then why are you using Python???

63

Appendix 5:
Regular Expressions

64

Regular Expressions

. Used widely
- Java (string manipulation)
- Python (string manipulation)
- Unix grep command (file searching)
- Bash shell (filename wildcards)

- SQL 1ike clauses (querying databases)
- See upcoming Database Programming lectures

65

Regular Expressions

RE
thing
“thing
thing$
“thing$

A

~S

thing.$

thing\.$
\\thing\\
[tT]hing
thing[0-9]
thing[*0-9]
thing[0-9] ["0-9]
thingl.*thing?2
“thingl.*thing2$

Matches

thing anywhere in string

thing at beginning of string

thing at end of string

string that contains only thing

any string, even empty

empty string

non-empty, 1.e. the first char in string
thing plus any char at end of string
thing. at end of string

\thing\ anywhere in string

thing or Thing anywhere 1n string

thing followed by one digit

thing followed by a non-digit

thing followed by digit, then non-digit
thingl then any (or no) text then thing2
thingl at beginning and thingZ2 at end

Thanks to Prof. Brian Kernighan

66

Regular Expressions

. What do these match?
- a.*e.*1.*¥0.*u
. Try with grep command and
/usr/share/dict/words file

VAN

- ~"["aei1iou] *a["aeiou] *e["ael1ou] *1 |
aeiou] *o["aeiou] *ul[taeioul] *$
- Try with grep command and
/usr/share/dict/words file

Thanks to Prof. Brian Kernighan
67

Regular Expressions

. Implementations vary

- See Mastering Regular Expressions (Jeffrey

Friedl) book
- ~500 pages!

. In Python...

68

Regular Expressions

RE Matches
X the character X, except for metacharacters
\ X the character X, where X i1s a metacharacter
any character except \n

(use DOTALL as argument to compile() to match \n too)
~ start of string
$ end of string
XY X followed by Y
X* zero or more cases of X (X*? is the same, but non-greedy)
X+ one or more cases of X (X+? is the same, but non-greedy)
X? zero or one case of X (X?? 1s the same, but non-greedy)
[...] any one of
[*...] any character other than
[X-Y] any character in the range X through Y
X|Y X or Y

(o) ..., and indicates a group

Precedence: * + ? higher than concatenation, which is higher than |

69

Regular Expressions

\t
\v
\n
\r
\f
\a
\e
AN\

\b
\B
\d
\D
\'s
\S
\w

\Z

Matches

tab

vertical tab

newline

return

form feed

alert

escape

backslash

empty string at start of given string

empty string, but only at start or end of a word
empty string, but not at start or end of a word
a digit

a non-digit

a white space character, that is, [\t\n\r\f\v]

a non-white space character

an alphanumeric character, that 1is, [a-zA-Z0-9]
a non—-alphanumeric character

the empty string at the end of the given string

70

Regular Expressions

. What kinds of strings do these regular

expressions match?

- [=+]12([0=-91+\.2[0=-9]1*|\.[0-91+) (I
Ee] [-+]12[0-9]+) ?

- /*.*?*/ (use with DOTALL)

- Why the question mark?
- Why DOTALL?

. Commentary: Regular expressions are
write-only!!!

71

Regular Expressions

. Some theory:

- Regular expressions have the same power
as deterministic finite state automata

(DFASs)

- Areqgular expression defines a reqular
language

- A DFA also defines a regular language

72

Regular Expressions

b
v @, 0,

vt @, 0 0@

73

Appendix 6:
The Python Debugger

74

The Python Debugger

. pdb debugger is bundled with Python

. To use pdb:

$ python —-m pdb somefile.py

75

The Python Debugger

Some pdb Commands
* help
* break functionOrMethod
* break filename:linenum
* run
e list
* next
* step
* continue
* print expr
* where

e quit

Note similarities with gdb

76

The Python Debugger

. Common commands have abbreviations:
h,b,r,1,n,s,c,p,w, g

. Blank line means repeat the same
command

. Beware: Cannot easily read from stdin

’r7

