
fractionprelim.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # fractionprelim.py

5: # Author: Bob Dondero

6: #---

7: import euclid

8: #---

9:

10: class Fraction:

11: def __init__(self, num=0, den=1):

12: if den == 0:

13: raise ZeroDivisionError(’Denominator cannot be 0’)

14: self._num = num

15: self._den = den

16: self._normalize()

17:

18: def _normalize(self):

19: if self._den < 0:

20: self._num *= -1

21: self._den *= -1

22: if self._num == 0:

23: self._den = 1

24: else:

25: gcden = euclid.gcd(self._num, self._den)

26: self._num //= gcden

27: self._den //= gcden

28:

29: def to_string(self):

30: if self._den == 1:

31: return str(self._num)

32: return ’%d/%d’ % (self._num, self._den)

33:

34: def equals(self, other):

35: return (self._num == other._num) and (self._den == other._den)

36:

37: def compare_to(self, other):

38: if (self._num * other._den) < (other._num * self._den):

39: return -1

40: if (self._num * other._den) > (other._num * self._den):

41: return 1

42: return 0

43:

44: def negate(self):

45: return Fraction(-self._num, self._den)

46:

47: def add(self, other):

48: new_num = (self._num * other._den) + (other._num * self._den)

49: new_den = self._den * other._den

50: return Fraction(new_num, new_den)

51:

52: def subtract(self, other):

53: new_num = (self._num * other._den) - (other._num * self._den)

54: new_den = self._den * other._den

55: return Fraction(new_num, new_den)

56:

57: def multiply(self, other):

58: new_num = self._num * other._num

59: new_den = self._den * other._den

60: return Fraction(new_num, new_den)

61:

62: def divide(self, other):

63: new_num = self._num * other._den

64: new_den = self._den * other._num

65: return Fraction(new_num, new_den)

fractionprelimclient.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # fraction1client.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9: import fractionprelim as fraction

10:

11: def main():

12:

13: try:

14: line = input(’Numerator 1: ’)

15: num1 = int(line)

16: line = input(’Denominator 1: ’)

17: den1 = int(line)

18: line = input(’Numerator 2: ’)

19: num2 = int(line)

20: line = input(’Denominator 2: ’)

21: den2 = int(line)

22:

23: frac1 = fraction.Fraction(num1, den1)

24: print(’frac1:’, frac1.to_string())

25:

26: frac2 = fraction.Fraction(num2, den2)

27: print(’frac2:’, frac2.to_string())

28:

29: if frac1.equals(frac2):

30: print(’frac1 equals frac2’)

31: if not frac1.equals(frac2):

32: print(’frac1 does not equal frac2’)

33:

34: comparison = frac1.compare_to(frac2)

35: if comparison < 0:

36: print(’frac1 is less than frac2’)

37: if comparison > 0:

38: print(’frac1 is greater than frac2’)

39: if comparison <= 0:

40: print(’frac1 is less than or equal to frac2’)

41: if comparison >= 0:

42: print(’frac1 is greater than or equal to frac2’)

43:

44: frac3 = frac1.negate()

45: print(’-frac1:’, frac3.to_string())

46:

47: frac3 = frac1.add(frac2)

48: print(’frac1 + frac2:’, frac3.to_string())

49:

50: frac3 = frac1.subtract(frac2)

51: print(’frac1 - frac2:’, frac3.to_string())

52:

53: frac3 = frac1.multiply(frac2)

54: print(’frac1 * frac2:’, frac3.to_string())

55:

56: frac3 = frac1.divide(frac2)

57: print(’frac1 / frac2:’, frac3.to_string())

58:

59: except Exception as ex:

60: print(str(ex), file=sys.stderr)

61: sys.exit(1)

62:

63: #---

64: if __name__ == ’__main__’:

65: main()

The Python Language (Part 4): Page 1 of 8

fraction.py (Page 1 of 2)

1: #!/usr/bin/env python

2:

3: #---

4: # fraction.py

5: # Author: Bob Dondero

6: #---

7:

8: import euclid

9:

10: #---

11:

12: class Fraction:

13:

14: def __init__(self, num=0, den=1):

15: if den == 0:

16: raise ZeroDivisionError(’Denominator cannot be 0’)

17: self._num = num

18: self._den = den

19: self._normalize()

20:

21: def _normalize(self):

22: if self._den < 0:

23: self._num *= -1

24: self._den *= -1

25: if self._num == 0:

26: self._den = 1

27: else:

28: gcden = euclid.gcd(self._num, self._den)

29: self._num //= gcden

30: self._den //= gcden

31:

32: def __str__(self):

33: if self._den == 1:

34: return str(self._num)

35: return ’%d/%d’ % (self._num, self._den)

36:

37: def __eq__(self, other):

38: return (self._num == other._num) and (self._den == other._den)

39:

40: def __ne__(self, other):

41: return not self == other

42:

43: def __lt__(self, other):

44: return (self._num * other._den) < (other._num * self._den)

45:

46: def __gt__(self, other):

47: return (self._num * other._den) > (other._num * self._den)

48:

49: def __le__(self, other):

50: return not self > other

51:

52: def __ge__(self, other):

53: return not self < other

54:

55: def __neg__(self):

56: return Fraction(-self._num, self._den)

57:

58: def __add__(self, other):

59: new_num = (self._num * other._den) + (other._num * self._den)

60: new_den = self._den * other._den

61: return Fraction(new_num, new_den)

62:

63: def __sub__(self, other):

64: new_num = (self._num * other._den) - (other._num * self._den)

65: new_den = self._den * other._den

fraction.py (Page 2 of 2)

66: return Fraction(new_num, new_den)

67:

68: def __mul__(self, other):

69: new_num = self._num * other._num

70: new_den = self._den * other._den

71: return Fraction(new_num, new_den)

72:

73: def __truediv__(self, other):

74: new_num = self._num * other._den

75: new_den = self._den * other._num

76: return Fraction(new_num, new_den)

The Python Language (Part 4): Page 2 of 8

fractionclient.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # fractionclient.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9: import fraction

10:

11: def main():

12:

13: try:

14:

15: line = input(’Numerator 1: ’)

16: num1 = int(line)

17: line = input(’Denominator 1: ’)

18: den1 = int(line)

19: line = input(’Numerator 2: ’)

20: num2 = int(line)

21: line = input(’Denominator 2: ’)

22: den2 = int(line)

23:

24: frac1 = fraction.Fraction(num1, den1)

25: print(’frac1:’, str(frac1)) # Same as frac1.__str__()

26:

27: frac2 = fraction.Fraction(num2, den2)

28: print(’frac2:’, frac2) # print() calls str(frac2)

29: # Same as frac2.__str__()

30:

31: if frac1 == frac2: # Same as frac1.__eq__(frac2)

32: print(’frac1 equals frac2’)

33: if frac1 != frac2: # Same as frac1.__ne__(frac2)

34: print(’frac1 does not equal frac2’)

35: if frac1 < frac2: # Same as frac1.__lt__(frac2)

36: print(’frac1 is less than frac2’)

37: if frac1 > frac2: # Same as frac1.__gt__(frac2)

38: print(’frac1 is greater than frac2’)

39: if frac1 <= frac2: # Same as frac1.__le__(frac2)

40: print(’frac1 is less than or equal to frac2’)

41: if frac1 >= frac2: # Same as frac1.__ge__(frac2)

42: print(’frac1 is greater than or equal to frac2’)

43:

44: frac3 = -frac1 # Same as frac1.__neg__()

45: print(’-frac1:’, frac3)

46:

47: frac3 = frac1 + frac2 # Same as frac1.__add__(frac2)

48: print(’frac1 + frac2:’, frac3)

49:

50: frac3 = frac1 - frac2 # Same as frac1.__sub__(frac2)

51: print(’frac1 - frac2:’, frac3)

52:

53: frac3 = frac1 * frac2 # Same as frac1.__mul__(frac2)

54: print(’frac1 * frac2:’, frac3)

55:

56: frac3 = frac1 / frac2 # Same as frac1.__truediv__(frac2)

57: print(’frac1 / frac2:’, frac3)

58:

59: except Exception as ex:

60: print(str(ex), file=sys.stderr)

61: sys.exit(1)

62:

63: #---

64: if __name__ == ’__main__’:

65: main()

blank (Page 1 of 1)

1: This page is intentionally blank.

The Python Language (Part 4): Page 3 of 8

EqualityStr.java (Page 1 of 1)

1: import java.util.Scanner;

2:

3: public class EqualityStr

4: {

5: public static void main(String[] args)

6: {

7: Scanner scanner = new Scanner(System.in);

8:

9: System.out.println("Enter the first string:");

10: String s1 = scanner.nextLine();

11:

12: System.out.println("Enter the second string:");

13: String s2 = scanner.nextLine();

14:

15: System.out.println(s1 == s2);

16: System.out.println(s1.equals(s2));

17: }

18: }

equalitystr.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # equalitystr.py

5: # Author: Bob Dondero

6: #---

7:

8: def main():

9:

10: s1 = input(’Enter the first string:\n’)

11: s2 = input(’Enter the second string:\n’)

12:

13: print(s1 is s2)

14: print(s1 == s2)

15:

16: if __name__ == ’__main__’:

17: main()

The Python Language (Part 4): Page 4 of 8

EqualityInt.java (Page 1 of 1)

1: import java.util.Scanner;

2:

3: public class EqualityInt

4: {

5: public static void main(String[] args)

6: {

7: Scanner scanner = new Scanner(System.in);

8:

9: System.out.println("Enter the first int:");

10: int i1 = scanner.nextInt();

11:

12: System.out.println("Enter the second int:");

13: int i2 = scanner.nextInt();

14:

15: System.out.println(i1 == i2);

16: // System.out.println(i1.equals(i2));

17: }

18: }

equalityint.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # equalityint.py

5: # Author: Bob Dondero

6: #---

7:

8: def main():

9:

10: i1 = int(input(’Enter the first int:\n’))

11: i2 = int(input(’Enter the second int:\n’))

12:

13: print(i1 is i2)

14: print(i1 == i2)

15:

16: if __name__ == ’__main__’:

17: main()

The Python Language (Part 4): Page 5 of 8

queue.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # queue.py

5: # Author: Bob Dondero

6: #---

7:

8: class _Node:

9:

10: def __init__(self, item):

11: self._item = item

12: self._next = None

13: def get_item(self):

14: return self._item

15: def get_next(self):

16: return self._next

17: def set_next(self, next):

18: self._next = next

19:

20: class Queue:

21:

22: def __init__(self):

23: self._head_node = None

24: self._tail_node = None

25:

26: def put(self, item):

27: new_node = _Node(item)

28: if self._tail_node is None:

29: self._head_node = new_node

30: else:

31: self._tail_node.set_next(new_node)

32: self._tail_node = new_node

33:

34: def get(self):

35: if self._head_node is None:

36: raise Exception(’Empty queue’)

37: item = self._head_node.get_item()

38: self._head_node = self._head_node.get_next()

39: if self._head_node is None:

40: self._tail_node = None

41: return item

42:

43: def is_empty(self):

44: return self._head_node is None

priorityqueue.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # priorityqueue.py

5: # Author: Bob Dondero

6: #---

7:

8: import queue

9:

10: class PriorityQueue (queue.Queue):

11:

12: def put(self, item):

13: new_node = queue._Node(item)

14:

15: if self._head_node is None:

16: self._head_node = new_node

17: self._tail_node = new_node

18: return

19:

20: prev_node = None

21: curr_node = self._head_node

22: while curr_node is not None:

23: if curr_node.get_item() < item:

24: if prev_node is None:

25: self._head_node = new_node

26: else:

27: prev_node.set_next(new_node)

28: new_node.set_next(curr_node)

29: return

30: prev_node = curr_node

31: curr_node = curr_node.get_next()

32:

33: self._tail_node.set_next(new_node)

34: self._tail_node = new_node

The Python Language (Part 4): Page 6 of 8

priorityqueueclient.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # priorityqueueclient.py

5: # Author: Bob Dondero

6: #---

7:

8: import sys

9: import priorityqueue

10:

11: def main():

12:

13: pqueue = priorityqueue.PriorityQueue()

14:

15: print(’Enter non-negative ints, one per line.’)

16: print(’Enter a negative int to stop.’)

17:

18: try:

19: line = input()

20: item = int(line)

21: while item >= 0:

22: pqueue.put(item)

23: line = input()

24: item = int(line)

25:

26: while not pqueue.is_empty():

27: item = pqueue.get()

28: print(item)

29:

30: except Exception as ex:

31: print(ex, file=sys.stderr)

32: sys.exit(1)

33:

34: if __name__ == ’__main__’:

35: main()

blank (Page 1 of 1)

1: This page is intentionally blank.

The Python Language (Part 4): Page 7 of 8

objectparam1.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # objectparam1.py

5: # Author: Bob Dondero

6: #---

7:

8: class IntWrapper:

9: def __init__(self, i):

10: self._i = i

11: def get(self):

12: return self._i

13: def set(self, i):

14: self._i = i

15:

16: #---

17:

18: def my_func(iw2):

19: iw2 = IntWrapper(6)

20:

21: #---

22:

23: def main():

24: iw1 = IntWrapper(5)

25: my_func(iw1)

26: print(iw1.get())

27:

28: #---

29:

30: if __name__ == ’__main__’:

31: main()

objectparam2.py (Page 1 of 1)

1: #!/usr/bin/env python

2:

3: #---

4: # objectparam2.py

5: # Author: Bob Dondero

6: #---

7:

8: class IntWrapper:

9: def __init__(self, i):

10: self._i = i

11: def get(self):

12: return self._i

13: def set(self, i):

14: self._i = i

15:

16: #---

17:

18: def my_func(iw2):

19: iw2.set(6)

20:

21: #---

22:

23: def main():

24: iw1 = IntWrapper(5)

25: my_func(iw1)

26: print(iw1.get())

27:

28: #---

29:

30: if __name__ == ’__main__’:

31: main()

32:

The Python Language (Part 4): Page 8 of 8

