fractionprelim.py (Page 1 of 1)
#!/usr/bin/env python

#

fractionprelim.py

#
import euclid
#___

1
2
3
4:
5: # Author: Bob Dondero
6.
7
8
9

10: class Fraction:

11: def __init__ (self, num=0, den=1):

12: if den == 0:

13: raise ZeroDivisionError (' Denominator cannot be 0')
14: self._num = num

15: self._den = den

16: self._normalize ()

17:

18: def _normalize (self):

19: if self._den < O:

20: self._num *= -1

21: self._den *= -1

22: if self._num ==

23: self._den =1

24: else:

25: gcden = euclid.gcd(self._num, self._den)

26: self._num //= gcden

27: self._den //= gcden

28:

29: def to_string(self):

30: if self._den ==

31: return str(self._num)

32: return '%d/%d’ % (self._num, self._den)

33:

34: def equals (self, other):

35: return (self._num == other._num) and (self._den == other._den)
36:

37: def compare_to (self, other):

38: if (self._num * other._den) < (other._num * self._den):
39: return -1

40: if (self._num * other._den) > (other._num * self._den):
41: return 1

42: return 0

43:

44: def negate (self):

45: return Fraction(-self._num, self._den)

46:

47 def add(self, other):

48: new_num = (self._num * other._den) + (other._num * self._den)
49: new_den = self._den * other._den

50: return Fraction (new_num, new_den)

51:

52: def subtract (self, other):

53: new_num = (self._num * other._den) - (other._num * self._den)
54: new_den = self._den * other._den

55: return Fraction (new_num, new_den)

56:

57: def multiply(self, other):

58: new_num = self._num * other._num

59: new_den = self._den * other._den

60: return Fraction (new_num, new_den)

61:

62: def divide (self, other):

63: new_num = self. _num * other._den

64: new_den = self._den * other._num

65: return Fraction (new_num,

new_den)

The Python Language (Part 4): Page 1 of 8

fractionprelimclient.py (Page 1 of 1)
1: #!/usr/bin/env python

#

fractionlclient.py

2

3

4:

5: # Author: Bob Dondero
6: #

7

8

: import sys
9: import fractionprelim as fraction

10:

11: def main():

12:

13: try:

14: line = input (’Numerator 1: ')

15: numl = int (line)

16: line = input ('Denominator 1: ')

17: denl = int (line)

18: line = input (' Numerator 2: ')

19: num2 = int (line)

20: line = input ('Denominator 2: ')

21: den2 = int (line)

22:

23: fracl = fraction.Fraction(numl, denl)

24: print (' fracl:’, fracl.to_string()

25:

26: frac2 = fraction.Fraction(num2, den2)

27: print (' frac2:’, frac2.to_string()

28:

29: if fracl.equals(frac2):

30: print (' fracl equals frac2’)

31: if not fracl.equals(frac2):

32: print (' fracl does not equal frac2’)
33:

34: comparison = fracl.compare_to (frac2)

35: if comparison < O:

36: print (' fracl is less than frac2’)

37: if comparison > O:

38: print (' fracl is greater than frac2’)
39: if comparison <= 0:

40: print (' fracl is less than or equal to frac2’)
41: if comparison >= 0:

42: print (' fracl is greater than or equal to frac2’)
43:

44: frac3 = fracl.negate ()

45: print (' —fracl:’, frac3.to_string()

46:

47: frac3 = fracl.add(frac2)

48: print (' fracl + frac2:’, frac3.to_string()
49:

50: frac3 = fracl.subtract (frac2)

51: print (' fracl - frac2:’, frac3.to_string()
52

53: frac3 = fracl.multiply (frac2)

54: print (' fracl * frac2:’, frac3.to_string()
55:

56: frac3 = fracl.divide (frac2)

57: print (' fracl / frac2:’, frac3.to_string()
58

59: except Exception as ex:

60: print (str(ex), file=sys.stderr)

61: sys.exit (1)

62:

63: # - - - - - -
64: if _ name_ == '_main__':

65 main ()

fraction.py (Page 1 of 2)

#!/usr/bin/env python

#

fraction.py
Author: Bob Dondero

#

import euclid

#___

class Fraction:

def

def

def

def

def

def

def

def

def

def

def

def

_init___(self, num=0, den=1):
if den == 0:
raise ZeroDivisionError (' Denominator cannot be 0')
self._num = num
self._den = den
self._normalize()

_normalize (self):
if self._den < 0:
self._num *= -1
self._den *= -1
if self._num == 0:
self. _den =1
else:
gcden = euclid.gcd(self._num, self._den)
self._num //= gcden
self._den //= gcden

_str___(self):
if self._den == 1:
return str(self._num)
return '%d/%d’ % (self._num, self._den)

_eq__(self, other):

return (self._num == other._num) and (self._den == other._den)
__ne__ (self, other):

return not self == other

1lt__ (self, other):

return (self._num * other._den) < (other._num * self._den)

_gt___(self, other):
return (self._num * other._den) > (other._num * self._den)

le___(self, other):

return not self > other

_ge___(self, other):
return not self < other

__neg__ (self):
return Fraction(-self._num, self._den)

_add___(self, other):
new_num = (self._num * other._den) + (other._num * self._den)
new_den = self._den * other._den

return Fraction (new_num, new_den)

_sub__ (self, other):
new_num = (self._num * other._den) - (other._num * self._den)
new_den = self._den * other._den

The Python Language (Part 4): Page 2 of 8

fraction.py (Page 2 of 2)

66: return Fraction (new_num, new_den)
67:

68: def _ mul__ (self, other):

69: new_num = self._num * other._num
70: new_den = self._den * other._den
71: return Fraction (new_num, new_den)
72:

73: def __truediv___(self, other):

74: new_num = self. num * other._den
75: new_den = self._den * other._num
76: return Fraction (new_num, new_den)

fractionclient.py (Page 1 of 1)

#!/usr/bin/env python

#

fractionclient.py

Au

thor:

Bob Dondero

#

impo.

rt sys

import fraction

def main() :

try:

line = input (' Numerator 1: ')

numl = int (line)

line = input ('Denominator 1: ')

denl = int (line)

line = input ('Numerator 2: ')

num2 = int (line)

line = input ('Denominator 2: ')

den2 = int (line)

fracl = fraction.Fraction(numl, denl)
print (' fracl:’, str(fracl)) # Same as fracl.__str
frac2 = fraction.Fraction (num2, den2)

print (' frac2:’, frac2) # print() calls str(frac2)

if fracl == frac2: # Same as fracl.__eq__ (frac2)
print (' fracl equals frac2’)

if fracl != frac2: # Same as fracl.__ne_ (frac2)
print (' fracl does not equal frac2’)

if fracl < frac2: # Same as fracl.__1t__ (frac2)
print (' fracl is less than frac2’)

if fracl > frac2: # Same as fracl.__gt__(frac2)
print (' fracl is greater than frac2’)

if fracl <= frac2: # Same as fracl.__le__ (frac2)
print (' fracl is less than or equal to frac2’)

if fracl >= frac2: # Same as fracl.__ge__ (frac2)
print (' fracl is greater than or equal to frac2’)

frac3 = -fracl # Same as fracl.__neg__ ()

Same as frac2.__str__ ()

print ('—-fracl:’, frac3)

()

frac3 = fracl + frac2 # Same as fracl.__add__ (frac2)
print (' fracl + frac2:’, frac3)

frac3 = fracl - frac2 # Same as fracl.__sub__ (frac2)
print (' fracl - frac2:’, frac3)

frac3 = fracl * frac2 # Same as fracl.__mul__ (frac2)
print (' fracl * frac2:’, frac3)

frac3 = fracl / frac2 # Same as fracl.__truediv__ (frac2)

print (' fracl / frac2:’, frac3)

except Exception as ex:
print (str(ex), file=sys.stderr)
sys.exit (1)

The Python Language (Part 4): Page 3 of 8

blank (Page 1 of 1)
1: This page is intentionally blank.

The Python Language (Part 4): Page 4 of 8

EqualityStr.java (Page 1 of 1) equalitystr.py (Page 1 of 1)

1: import java.util.Scanner; 1: #!/usr/bin/env python

2 2

3: public class EqualityStr 3: #

4: { 4: # equalitystr.py

5: public static void main (String[] args) 5: # Author: Bob Dondero

6: { 6: #

7 Scanner scanner = new Scanner (System.in); 7

8 8: def main():

9 System.out.println ("Enter the first string:"); 9:
10: String sl = scanner.nextLine(); 10: sl = input ('Enter the first string:\n’)
11: 11: s2 = input ('Enter the second string:\n’)
12: System.out.println ("Enter the second string:"); 12:
13: String s2 = scanner.nextLine(); 13: print (sl is s2)
14: 14: print (sl == s2)
15: System.out.println (sl == s2); 15:
16: System.out.println(sl.equals(s2)); 16: if _ name_ == '_main__':
17: } 17: main ()

The Python Language (Part 4): Page 5 of 8

EqualityInt.java (Page 1 of 1) equalityint.py (Page 1 of 1)

1: import java.util.Scanner; 1: #!/usr/bin/env python

2 2:

3: public class EqualityInt 3: #

4: { 4: # equalityint.py

5: public static void main (String[] args) 5: # Author: Bob Dondero

6: { 6: #

7 Scanner scanner = new Scanner (System.in); 7

8 8: def main() :

9: System.out.println ("Enter the first int:"); 9:
10: int il = scanner.nextInt(); 10: il = int (input ('Enter the first int:\n’))
11: 11: i2 = int (input ('Enter the second int:\n’))
12: System.out.println ("Enter the second int:"); 12:
13: int i2 = scanner.nextInt(); 13: print (il is 1i2)
14: 14: print (il == 1i2)
15: System.out.println(il == 1i2); 15:
16: // System.out.println(il.equals(i2)); 16: if _ name__ == ’'_main__':
17: } 17: main ()

The Python Language (Part 4): Page 6 of 8

queue.py (Page 1 of 1) priorityqueue.py (Page 1 of 1)
1: #!/usr/bin/env python 1: #!/usr/bin/env python
2 2:
3: # 3: #
4: # queue.py 4: # priorityqueue.py
5: # Author: Bob Dondero 5: # Author: Bob Dondero
6: # 6: #
7 7:
8: class _Node: 8: import queue
9 9:
10: def __init__ (self, item): 10: eclass PriorityQueue (queue.Queue):
11: self._item = item 11:
12: self._next = None 12: def put (self, item):
13: def get_item(self): 13: new_node = queue._Node (item)
14: return self._item 14:
15: def get_next (self): 15: if self._head_node is None:
16: return self._ next 16: self._head_node = new_node
17: def set_next (self, next): 17: self._tail _node = new_node
18: self._next = next 18: return
19: 19
20: class Queue: 20: prev_node = None
21: 21: curr_node = self._head_node
22: def __init__ (self): 22: while curr_node is not None:
23: self._head_node = None 23: if curr_node.get_item() < item:
24: self._tail _node = None 24: if prev_node is None:
25: 25: self._head_node = new_node
26: def put (self, item): 26: else:
27: new_node = _Node (item) 27: prev_node.set_next (new_node)
28: if self._tail node is None: 28: new_node.set_next (curr_node)
29: self._head_node = new_node 29: return
30: else: 30: prev_node = curr_node
31: self._tail_node.set_next (new_node) 31: curr_node = curr_node.get_next ()
32: self._tail_node = new_node 32:
33: 33: self._tail_node.set_next (new_node)
34: def get (self): 34: self._tail_node = new_node
35: if self._head_node is None:
36: raise Exception (’'Empty queue’)
37: item = self._head_node.get_item()
38: self._head _node = self._head _node.get_next ()
39: if self._head_node is None:
40: self._tail_node = None
41: return item
42:
43: def is_empty (self):

44: return self._head _node is None

The Python Language (Part 4): Page 7 of 8

priorityqueueclient.py (Page 1 of 1) blank (Page 1 of 1)
#!/usr/bin/env python 1: This page is intentionally blank.
#

1

2

3

4: # priorityqueueclient.py
5: # Author: Bob Dondero
6

7

8

9

#

import sys
import priorityqueue

11: def main():

12:

13: pgqueue = priorityqueue.PriorityQueue ()
14:

15: print (' Enter non-negative ints, one per line.’)
16: print ('Enter a negative int to stop.’)
17:

18: try:

19: line = input ()

20: item = int (line)

21: while item >= 0:

22: pqueue.put (item)

23: line = input ()

24: item = int (line)

25

26: while not pqueue.is_empty () :

27: item = pqueue.get ()

28: print (item)

29

30: except Exception as ex:

31: print (ex, file=sys.stderr)

32: sys.exit (1)

33:

34: if _ name_ == '_main__':

35: main ()

objectparaml.py (Page 1 of 1)

#!/usr/bin/env python

#

objectparaml.py
Author: Bob Dondero
#

class IntWrapper:

def __init__ (self, 1i):

self. i =1
def get (self):

return self._ i
def set (self, 1i):

self. i =1

def my_func(iw2):
iw2 = IntWrapper (6)

def main() :
iwl = IntWrapper (5)
my_func (iwl)
print (iwl.get ())

The Python Language (Part 4):

objectparam2.py (Page 1 of 1)

#!/usr/bin/env python

#

Page 8 of 8

objectparam?2.py
Author: Bob Dondero
#

class IntWrapper:
def __init__ (self, 1i):
self. i =1
def get (self):
return self._i
def set (self, i):
self._i =1

def my_func (iw2) :
iw2.set (6)

def main () :
iwl = IntWrapper (5)
my_func (iwl)
print (iwl.get ())

/__main__ ':

if _ name
main ()

