
The Python Language
(Part 4)

Copyright © 2026 by
Robert M. Dondero, Ph.D.

Princeton University

1

Objectives

• We will cover:
– A subset of Python...
– That is appropriate for COS 333...
– Through example programs

2

Agenda

• Object-oriented programming
• Operator overloading
• Object identity and equality
• Inheritance

3

Object-Oriented Programming

• See fractionprelim.py,
fractionprelimclient.py

4

$ python fractionprelimclient.py
Numerator 1: 1
Denominator 1: 2
Numerator 2: 3
Denominator 2: 4
frac1: 1/2
frac2: 3/4
frac1 does not equal frac2
frac1 is less than frac2
frac1 is less than or equal to frac2
-frac1: -1/2
frac1 + frac2: 5/4
frac1 - frac2: -1/4
frac1 * frac2: 3/8
frac1 / frac2: 2/3
$

Aside: Name Mangling

• Incidentally:
– Use of leading double underscores causes

name mangling
• Example: In Fraction, compiler turns __num into
_Fraction__num

5

Agenda

• Object-oriented programming
• Operator overloading
• Object identity and equality
• Inheritance

6

Operator Overloading

• See fraction.py, fractionclient.py

7

$ python fractionclient.py
Numerator 1: 1
Denominator 1: 2
Numerator 2: 3
Denominator 2: 4
frac1: 1/2
frac2: 3/4
frac1 does not equal frac2
frac1 is less than frac2
frac1 is less than or equal to frac2
-frac1: -1/2
frac1 + frac2: 5/4
frac1 - frac2: -1/4
frac1 * frac2: 3/8
frac1 / frac2: 2/3
$

Operator Overloading
Special Method Equivalent
x.__neg__() -x

x.__pos__() +x

x.__add__(y) x+y

x.__mod__(y) x%y

x.__mul__(y) x*y

x.__sub__(y) x-y

x.__truediv__(y) x/y

x.__floordiv__(y) x//y

x.__pow__(y) x**y

8

Operator Overloading
Special Method Equivalent
x.__invert__() ~x

x.__and__(y) x&y

x.__lshift__(y) x<<y

x.__or__(y) x|y

x.__rshift__(y) x>>y

x.__xor__(y) x^y

x.__float__() float(x)

x.__int__() int(x)

x.__str__() str(x)

x.__hash__() hash(x)

x.__abs__() abs(x)

9

Operator Overloading
Special Method Equivalent
x.__iadd__(y) x+=y

x.__ifloordiv__(y) x//=y

x.__imod__(y) x%=y

x.__imul__(y) x*=y

x.__isub__(y) x-=y

x.__itruediv__(y) x//=y

x.__iand__(y) x&=y

x.__ilshift__(y) x<<=y

x.__ior__(y) x|=y

x.__irshift__(y) x>>=y

x.__ixor__(y) x^=y

x.__ipow__(y) x**=y

10

Operator Overloading

Special Method Equivalent
x.__getitem__(y) x[y]

x.__setitem__(y, z) x[y] = z

x.__contains__(y) y in x

x.__delitem__(y) del(x[y])

x.__len__() len(x)

And many more!

11

Agenda

• Object-oriented programming
• Operator overloading
• Object identity and equality
• Inheritance

12

Object Identity and Equality

• See EqualityStr.java

13

$ javac EqualityStr.java
$ java EqualityStr
Enter the first string:
hi
Enter the second string:
hi
false
true
$

Object Identity and Equality

14

s1

“hi”s2

“hi”

STACK HEAP

s1 == s2 => false
s1.equals(s2) => true

Object Identity and Equality

• See equalitystr.py

15

$ python equalitystr.py
Enter the first string:
hi
Enter the second string:
hi
False
True
$

Object Identity and Equality

16

s1

“hi”s2

“hi”

STACK HEAP

s1 is s2 => False
s1 == s2 => s1.__eq__(s2) => True

Object Identity and Equality

17

Expression Compares
s1 is s2 Object references
s1 == s2
s1.__eq__(s2)

Objects

Expression Compares
s1 == s2 Object references
s1.equals(s2) Objects

Java, for type String:

Python, for type str:

Object Identity and Equality

• See EqualityInt.java

18

$ javac EqualityInt.java
$ java EqualityInt
Enter the first int:
12345
Enter the second int:
12345
true
$

Object Identity and Equality

19

12345i1

12345i2

STACK

i1 == i2 => true
i1.equals(i2) => Illegal

Object Identity and Equality

• See equalityint.py

20

$ python equalityint.py
Enter the first int:
12345
Enter the second int:
12345
False
True
$

Object Identity and Equality

21

i1

12345i2

12345

STACK HEAP

i1 is i2 => False
i1 == i2 => i1.__eq__(i2) => True

Object Identity and Equality

22

Expression Compares
i1 is i2 Object references
i1 == i2
i1.__eq__(i2)

Objects

Expression Compares
i1 == i2 Values
i1.equals(i2) Illegal

Java, for type int:

Python, for type int:

Object Identity and Equality

23

Expression Compares
x is y Object references
x == y
x.__eq__(y)

Objects

Expression Compares
x == y (sometimes) Values

(sometimes) Object references
x.equals(y) Objects

Java:

Python:

Language Characteristics
Java Hybrid OO language
Python Pure OO language

Agenda

• Object-oriented programming
• Operator overloading
• Object identity and equality
• Inheritance

24

Inheritance

• See queue.py, priorityqueue.py,
priorityqueueclient.py

25

$ python priorityqueueclient.py
Enter non-negative ints, one per line.
Enter a negative int to stop.
4
8
5
6
-1
8
6
5
4
$

Lecture Summary

• In this lecture we covered these aspects
of Python:
– Object-oriented programming
– Operator overloading
– Object identity and equality

• See also:
– Appendix 1: Predefined Objects
– Appendix 2: Objects as Arguments and

Parameters

26

Appendix 1:
Predefined Objects

27

Predefined Objects

• Recall equalityint.py

$ python equalityint.py
Enter the first int:
5
Enter the second int:
5
True
True
$

!

28

Predefined Objects

29

i1

5i2

STACK HEAP

i1 is i2 => True
i1 == i2 => i1.__eq__(i2) => True

Predefined Objects

• Explanation:
– For efficiency, cPython creates int objects

-5…256 at process startup
• At any time:

– Only one -5 int object exists
– Only one -4 int object exists
– …
– Only one 256 int object exists

30

Predefined Objects

• And, incidentally…
– For efficiency, cPython creates bool objects
True and False at process startup

• At any time:
– Only one True object exists
– Only one False object exists

31

Appendix 2:
Objects as Arguments

and Parameters

32

Objects as Args and Params

• See objectparam1.py

– What does it write?

33

Objects as Args and Params

34

(1) Before call of my_func() (2) After call of my_func()

(3) Before return from my_func() (4) After return from my_func()

iw1
STACK

See objectparam1.py (cont.)

5

HEAP STACK HEAP

5
iw1
iw2

STACK HEAP

5iw1
iw2

6

STACK HEAP

5iw1

Writes 5

Objects as Args and Params

• See objectparam2.py

– What does it write?

35

Objects as Args and Params

36

(1) Before call of my_func() (2) After call of my_func()

(3) Before return from my_func() (4) After return from my_func()

iw1
STACK

See objectparam2.py (cont.)

5

HEAP STACK HEAP

5
iw1
iw2

STACK HEAP

6iw1
iw2

STACK HEAP

6iw1

Writes 6

Objects as Args and Params

• In Python
– As in Java…
– Objects are passed by reference
– More precisely…
– Object references are passed by value

37

