
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/10/25 3:17  PM

5. THEORY OF COMPUTING

‣ introduction

‣models of computation

‣ universality

‣ computability

‣ halting problem
https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

5. THEORY OF COMPUTING

‣ introduction

‣models of computation

‣ universality

‣ computability

‣ halting problemR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Introduction to theory of computing

Fundamental questions.

・What is an algorithm?

・What is a general-purpose computer?

・What can/can’t a computer do?

・What can/can’t a computer do with limited resources?

History. Pioneering work at Princeton in the 1930s.

3

David Hilbert Kurt Gödel Alonzo Church Alan Turing

Introduction to theory of computing

Fundamental questions.

・What is an algorithm?

・What is a general-purpose computer?

・What can/can’t a computer do?

・What can/can’t a computer do with limited resources?

General approach. Consider minimal abstract machines.

Surprising outcome. Sweeping and relevant statements about all computers.

4

Why study theory of computing?

In theory…

・Deeper understanding of computation.

・Foundation of all modern computers.

・Philosophical implications.

・Pure science.

In practice…

・Pattern matching:	 theory of regular expressions.

・Sequential circuits:	 theory of finite-state automata.

・Compilers:	 	 theory of context-free grammars.

・Cryptography:	 	 theory of computational complexity.

・Data compression:	 theory of information.

・…

5

Some computational problems

Function problem. Compute a mathematical function.

6

problem description input output

integer
addition

given two integers x and y,
what is x + y ? 1 + 2 3

linear equation
satisfiability

given a system of linear equations,
does it have a solution?

2a + 6b = 4
 a + 3b = 3 no

primality
given a positive integer x,

is it prime? 17 yes

halting
problem

given a function f and its input x,
does the function halt on the given input?

 int x = 17;

 collatz(x);
yes

⋮ ⋮

input can be numbers,
text, image, video, code, …

(encoded in binary)

function finput x output f(x)

“decision problems”
(output is yes/no)

Post’s correspondence problem (PCP). Given n domino types, is there an arrangement of

dominos with matching top and bottom strings?

・Each domino has a top string and bottom string.

・No limit on the number of dominos used of each type.

Input.

Solution. Yes.

2 0 2 1 1 3

B

BA

A

BA

B

BA

ABA

AB

BB

B

ABA

AB

A

BA

0

ABA

AB

1

B

BA

2

BB

B

3 n = 4

A warmup puzzle

7

A

BA

ABA

AB

B

BA

BB

B

A

BA

ABA

AB

B

BA

BB

B

B

BA

ABA

AB

ABA

AB

BB

B

B

BA

A

BA

Theory of computing: quiz 1

Is there an arrangement of dominos with matching top and bottom strings?  

A. Yes.

B. No.  

8

last letter in top string can never
equal last letter in bottom string

(because no domino has that property)

0 1 2

BAB

A

A

BAB

AB

A

BA

B

3 n = 4

BAB

A

A

BAB

AB

A

BA

B

BAB

A

A

BAB

AB

A

BA

B

A warmup puzzle

Post’s correspondence problem (PCP). Given n domino types, is there an arrangement of

dominos with matching top and bottom strings?

・Each domino has a top string and bottom string.

・No limit on the number of dominos used of each type.

A reasonable idea. Write a Java program that takes n domino types as input and solves PCP.

Astonishing fact. It is provably impossible to write such a program!

9

0 1 2 3 4

. . .

n − 1

but not so easy because
you don’t know how many

dominos you will need

5. THEORY OF COMPUTING

‣ introduction

‣models of computation

‣ universality

‣ computability

‣ halting problemR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Deterministic finite-state automata demo

Goal. A simple model of computation.

11

YES

b b a a b b a b b

YES

NO

YES

Y N Nb b

b

aa a

accepts all binary strings
with a multiple of three b’s

input

Goal. A simple model of computation.

Deterministic finite-state automata demo

12

YES

b b a a b a b b

YES

NO

Y N Nb b

b

aa a NO

accepts all binary strings
with a multiple of three b’s

input

DFA. An abstract machine.

・Finite number of states.

・Begin in the start state; accept if end state is labeled Y.

・Repeat until the last input symbol has been consumed:

– read next input symbol

– move to the indicated state

b b a a b b a b b

Deterministic finite-state automata

13

YESYES

NO

YES

accepts all binary strings
with a multiple of three b’sY N Nb b

b

aa a

input

Theory of computing: quiz 2

Describe the set of strings that the DFA matches.

A. All binary strings ending in aa.

B. All binary strings containing aa.

C. All binary strings containing at least two a’s.

D. All binary strings containing an even number of a’s.

14

YES

b b a b a a b a

YES

NO

N N Ya a

b a

bb YES

does this DFA
accept this string ?

input

Deterministic finite-state automata

Fact. DFAs can solve some important problems, but not others.

15

solvable with DFA not solvable with DFA

even number of a’s and b’s equal number of a’s and b’s

legal Java variable name legal Java program

web form validation primality checking

PROSITE pattern in genomics Watson–Crick palindrome

sequential circuit Post’s correspondence problem

regular expression halting problem

⋮ ⋮

Turing machines: intuition

Goal. A simple model of computation that encompasses all known computational processes.

Approach. Characterize what a human “computer” can do with pencil, paper, and mechanical rules.

Ex. A familiar computational process.

Key characteristics. Discrete; read/write; conditionals and loops; no prior limit on time/space.

16

3 1 4 2

7 1 8 2

4

0

2

1

3

0

0

1

1

infinite loop possible

Turing machine. An abstract machine that embodies mechanical rules on previous slide.

Turing machine demo: balanced parentheses

17

go right until
right parenthesis

(and mark with X)

go left until
left parenthesis

(and mark with X)

read/write tape for I/O

halt (yes)

halt (no)

all left
parentheses
matched ?

Turing machines

Turing machine. An abstract machine that embodies mechanical rules on previous slide.

・Finite number of states and state transitions.

・Tape that stores symbols (for input, output, and intermediate results).

– can read and write to tape

– can move tape head left or right one cell

– no limit on length

Limitation. Each TM corresponds to one algorithm (or one program). Not programmable!

18

need separate TM
for each task

Turing gave precise
mathematical description

YES

NO

. . .

HALT

. . .

TM

Universal Turing machine

Next goal. A “programmable” Turing machine.

Key insight. A TM can be represented as a string.

Universal TM. A single TM that can compute anything computable by any TM.

・Input:		 description of a TM and input for that TM.

・Output:	 the result of running that TM on that input.

Theorem. [Turing 1936] There exists a universal TM.

Pf idea. Simulating a TM is a mechanical procedure.

19

YES

NO

.

HALTUTM

A B A A B ✶ 3 0 1 # 0 2 R 0 0 1 0 1 # 1 2 1 1 0 # H 2 2 2 0 1 #

TM input description of Turing machineseparator

treat program as data

TM. Formalizes the notion of an algorithm.

Universal TM. Formalizes the notion of a general-purpose computer.

Profound implications.

・Single, universal, device.

・Anyone can invent a new way to use a computer.

Implications of universal Turing machine

20

we are so used to having a UTM in our pocket
(smartphone), that we take this for granted

for communication, photos, music, videos,
games, calculators, word processing, …

pong, email, spreadsheet, web, search engine, e-commerce,
social media, cryptocurrency, self-driving car, ChatGPT, …

“ The importance of the universal machine is clear. We do not need to have an infinity

 of different machines doing different jobs…. The engineering problem of producing

 various machines for various jobs is replaced by the office work of ‘programming’

 the universal machine. ” — Alan Turing (1948)

5. THEORY OF COMPUTING

‣ introduction

‣models of computation

‣ universality

‣ computability

‣ halting problemR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Church–Turing thesis

Church-Turing thesis. Any computational problem that can be solved by a physical system

(in this universe) can be solved by a Turing machine.

Remark. It’s a thesis (not a theorem) since it’s a statement about physics.

・Subject to falsification.

・Not subject to mathematical proof.

Implications.

・“All” computational devices can solve exactly the same computational problems.

・Turing’s definition of computation is (equivalent to) the right one.

・Enables rigorous study of computation (in this universe).

・A new law of physics. (!)

22

this is what we mean by
“general-purpose computer”

black hole

DNA

Analytical Engine

Evidence supporting the Church–Turing thesis: random-access machines

Fact. All of these random-access machines are provably equivalent to a Turing machine.

・Macbook Pro, iPhone, Samsung Galaxy, supercomputer, …

・TOY machine.

・…

Implication 1. Processors are equivalent in terms of which computational problems they can solve.

Implication 2. Can’t design processors that can solve more computational problems.

23

ignoring limits of finite memorystay tuned

differences are in speed, power,
cost, input/output, reliability, usability, …

Evidence supporting the Church–Turing thesis: programming languages

Fact. All of these programming languages are provably equivalent to a Turing-machine.

・Java.

・Python, C, C#, C++.

・Fortran, Lisp, Javascript, Matlab, R, Swift, Go, …

・…

Implication 1. PLs are equivalent in terms of which computational problems they can solve.

Implication 2. Can’t invent PL that can solve more computational problems.

24

differences are in efficiency, writability, readability,
maintainability, modularity, reliability, portability,

and availability of libraries, …

ignoring intrinsic memory limitations

More evidence supporting the Church–Turing thesis

Fact. All of these models of computation are provably equivalent to a Turing-machine.

25

model of computation description

programming languages Java, Python, C, C#, C++, Fortran, Lisp, Javascript, …

random-access machines Macbook Pro, iPhone, Samsung Galaxy, TOY, …

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism

untyped λ-calculus formal system for defining and manipulating functions

recursive functions functions dealing with computation on integers

unrestricted grammars iterative string replacement rules used by linguists

cellular automata cells which change state based on local interactions

DNA computer compute using biological operations on DNA

quantum computer compute using superposition of quantum states

⋮ ⋮

ignoring intrinsic memory limitations

Theory of computing: quiz 3

Which model of computation is not universal?

A. Turing machines.

B. DFAs.

C. Java.

D. iPhone 15 Pro.

E. All of the above models are universal.

26

5. THEORY OF COMPUTING

‣ introduction

‣models of computation

‣ universality

‣ computability

‣ halting problemR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Computability

Def. A computational problem is computable if there exists a TM to solve it.

Def. A computational problem is uncomputable if no TM exists to solve it.

Theorem. [Turing 1936] The halting problem is uncomputable.

Theorem. [Post 1946] Post’s correspondence problem is uncomputable.

Profound implications.

・There exist computational problems that no Turing machine can solve.

・There exist computational problems that no computer can solve.

・There exist computational problems that can’t be solved in Java.

28

many such problems,
and many that are

important in practice

equivalently, Java program,
iOS app, quantum computer, …

Implications for programming systems

Q. Why is debugging difficult?

A. All of the following computational problems are uncomputable.

29

UNCOMPUTABLE

problem description

halting problem Given a function f, does it halt on a given input x?

totality problem Given a function f, does it halt on every input x?

no-input halting problem Given a function f with no inputs, does it halt?

program equivalence Do two function f and g always return the same value?

variable initialization Is the variable x initialized before it is used?

dead-code elimination Does this statement ever get executed?

memory management Will an object x ever be referenced again?

⋮ ⋮

Uncomputable problems from mathematics

Q. Why are some math calculations difficult?

A. The following computational problems are uncomputable.

problem description yes input no input

Hilbert’s 10 th problem
Given a polynomial equation with
integer coefficients, does there exist
an integer-valued solution?

definite integration
Given a rational function f(x) composed
of polynomial and trigonometric functions,
does the integral f(x) dx exist?

⋮ ⋮

30

UNCOMPUTABLE

6x3yz2 + 3xy2 − x3 = 10 x2 + y2 = 3

∫
∞

−∞

cos x
1 − x2

dx
<latexit sha1_base64="W/oVkCq9Se2VDf6L8V4SA1yaBYA=">AAACTHicbVDLSgMxFM3Ud321unQTWgRdWGbEF7gR3LisYG2hrSWTuaPBTGZI7kjL0L1f41a/wr3/4U4E03YWtnog5HDOvbm5x0+kMOi6H05hbn5hcWl5pbi6tr6xWSpv3Zo41RwaPJaxbvnMgBQKGihQQivRwCJfQtN/vBz5zSfQRsTqBgcJdCN2r0QoOEMr9UqVjlDYyw7sFeJgeJflhIZ7/X3aOadBv1equjV3DPqXeDmpkhz1XtnZ6gQxTyNQyCUzpu25CXYzplFwCcNiJzWQMP7I7qFtqWIRmG42XmZId60S0DDW9iikY/V3R8YiYwaRbysjhg9m1huJ/3ntFMOzbiZUkiIoPhkUppJiTEfJ0EBo4CgHljCuhf0r5Q9MM442v6kp47cT4FObZP1UCR4HMKNK7KNmQ5uiN5vZX3J7WPNOasfXR9WLszzPZbJDKmSPeOSUXJArUicNwskzeSGv5M15dz6dL+d7Ulpw8p5tMoXC4g/L8bQ8</latexit>Z 1

�1
f(x) dx

(x, y, z) = (5, 3, 0)

<latexit sha1_base64="GBayzPnpu/yf8g+amshQLOSP7gk=">AAACXXicbVDLThsxFHUGKOFRCLBg0Y1FVKlS1WiGV7NEYtMllRpAyoTI47kDFh57ZN9BE1nzIf0atvAJrPiVOmEWTeBIlo/OudfX9ySFFBbD8KUVLC2vfFptr61vbH7e2u7s7F5aXRoOA66lNtcJsyCFggEKlHBdGGB5IuEquT+f+lcPYKzQ6g9OChjl7FaJTHCGXhp3jmKhcOx++CvDSX3jGkLjzDBOXcy1pVXtaES/0+rmsKZpNe50w144A31PooZ0SYOL8U5rN041L3NQyCWzdhiFBY4cMyi4hHo9Li0UjN+zWxh6qlgOduRm29X0q1dSmmnjj0I6U//vcCy3dpInvjJneGcXvan4kTcsMeuPnFBFiaD426CslBQ1nUZFU2GAo5x4wrgR/q+U3zEfC/pA56bM3i6Az23iqlIJrlNYUCVWaFjtU4wWM3tPLg970Wnv5Pdx96zf5NkmX8gB+UYi8pOckV/kggwIJ3/JI3kiz63XYCXYDLbeSoNW07NH5hDs/wPKiLgI</latexit>Z 1

�1

cosx

1 + x2
dx

= π / e

More uncomputable problems

Q. Why are so many disciplines difficult?

A. The following computational problems are uncomputable.

31

problem description

polygonal tiling Is it possible to tile the plane with copies of a given polygon?

spectral gap Does a given quantum mechanical system have a spectral gap?

ray tracing Will a light ray reach some final position in an optical system?

data compression What is the shortest program that will produce a given string?

virus detection Is a given computer program a virus?

dynamical systems Is a generalized shift Φ chaotic?

network coding Does a given network admit a coding scheme?

Magic Does a given player have a winning strategy in a game of Magic?

⋮ ⋮

UNCOMPUTABLE

Theory of computing: quiz 4

Which of these computational problems are computable?

A. Given a function f, determine whether it goes into an infinite loop.

B. Given a positive integer n, compute its integer factorization.

C. Both A and B.

D. Neither A nor B.

32

try all possible factors between 2 and n
(algorithm is inefficient, but exists)

no-input halting problem

5. THEORY OF COMPUTING

‣ introduction

‣models of computation

‣ universality

‣ computability

‣ halting problemR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Theory of computing: quiz 5

Does the fruit-problem meme have a solution?  

A. Yes.

B. No.

34

99.99% of people cannot solve this!

Find positive whole values for , , and .

+ = 73+

 = 492036887597307620953308169431979905807117737201709962167938

 = 64569771028951337912377327587529162039355026271338039746564

 = 987641273512633441961454652940287576688853499237385873097

smallest solution (using elliptic curves)

Can write a program to enumerate all possibilities
and halt upon finding a solution.
But, if it does not seem to halt, when to stop?

The halting problem

Halting problem. Given a Java function f() and an input x, determine whether f(x) halts.

Ex. [Fermat’s last theorem]

Ahead. It’s impossible to write a Java program to solve the halting problem.

Note. Can solve the halting problem for some specific functions and/or inputs.

public static void f(int n) {
 for (int c = 1; true; c++)
 for (int a = 1; a <= c; a++)
 for (int b = 1; b <= c; b++)
 if (Math.pow(a, n) + Math.pow(b, n) == Math.pow(c, n))
 return;
}

35

assume arbitrary precision
arithmetic (no overflow)

Crux of problem: can trace function on input n.
If it halts, then you can safely conclude yes.
But, if it does not seem to halt, then you
don’t know when to stop and conclude no.

n halts? explanation

1 yes 11 + 11 = 21

2 yes 32 + 42 = 52

3 no Euler 1760

4 no Fermat 1670

5 no Dirichlet, Legendre 1825

⋮ no Wiles 1995f(n) halts if and only if there are positive integers a, b, and c such that an + bn = cn

but that might be very very hard
(even for 5-line Java functions)

Warmup: liar’s paradox

Liar’s paradox. [dates back to ancient Greek philosophers]

Logical conclusion. Cannot label all statements as true or false.

36

source of difficulty = self-reference

https://sketchplanations.com/the-liar-paradox

Theorem. [Turing 1936] The halting problem is uncomputable.

Pf sketch. [by contradiction]

・Assume that there exists a function halts() that solves the halting problem.

public boolean halts(String f, String x) {
 if (/* f(x) halts */) return true;
 else return false;
}

The halting problem is uncomputable

37

a function f and its input x
(both encoded as strings)

Can assume it’s in Java. Why?

Proof by contradiction: If a logical argument based on an assumption
leads to a contradiction, then that assumption must have been false.

halt() returns either true or false
(it cannot go into an infinite loop)

purported solution to the halting problem

The halting problem is uncomputable

Theorem. [Turing 1936] The halting problem is uncomputable.

Pf sketch. [by contradiction]

・Assume that there exists a function halts() that solves the halting problem.

・Write a function strange(f) that goes into an infinite loop if f(f) halts; and halts otherwise.

・Call strange() with itself as argument. (!!)

– if strange(strange) halts, then strange(strange) goes into an infinite loop

– if strange(strange) does not halt, then strange(strange) halts

・This is a contradiction; therefore, halts() cannot exist. ▪
38

a client of halts()

public void strange(String f) {
 if (halts(f, f))
 while (true) { } // infinite loop
}

a contradiction?

strange(strange);

purported solution to the halting problem

public boolean halts(String f, String x) {
 if (/* f(x) halts */) return true;
 else return false;
}

Big ideas

Turing machine. A, simple, formal model of computation.

Duality of programs and data. Encode both as strings and compute with both.

Universality. Concept of general-purpose programmable computers.

Church-Turing thesis. Computable at all = computable with a Turing machine.

Computability. There exist inherent limits to computation.

Turing’s 1936 paper. One of the most impactful scientific papers of the 20th century.

39

230 A. M. TUKING [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers IT, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
Avays similar to the class of real numbers, it is nevertheless enumerable.
In § 81 examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gbdelf. These results

f Godel, " Uber formal unentscheidbare Satze der Principia Mathematica und ver-
•vvandter Systeme, I " . Monatsheftc Math. Phys., 38 (1931), 173-198.

foundational ideas, all introduced
in Turing’s landmark paper

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

David Hilbert Wikimedia public domain

Kurt Gödel Wikimedia public domain

Alonzo Church Princeton University

Alan Turing Science Museum, London

EDSAC Computer Laboratory, Cambridge CC BY 2.0

Vintage Desktop Computer Adobe Stock education license

Macbook Pro M1 Apple

Google Dalles Data Center Google

Theory vs. Practice Ela Sjolie

Sound Effects Mixkit Mixkit free license

Babbage’s Analytical Engine Science Museum, London CC BY 2.0

DNA Computer Clean Future

Black Hole Gravity Adobe Stock education license

https://commons.wikimedia.org/wiki/File:Hilbert.jpg
https://wiki.creativecommons.org/wiki/public_domain
https://snl.no/Alonzo_Church
https://wiki.creativecommons.org/wiki/public_domain
https://snl.no/Alonzo_Church
https://blog.sciencemuseum.org.uk/the-multiple-lives-of-alan-turing/
https://commons.wikimedia.org/wiki/File:EDSAC_(19).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://stock.adobe.com/images/ld-vintage-desktop-computer-with-keyboard-and-mouse-old-fashioned-desktop-pc-retro-style-personal-computer-in-transparent-png/530804737
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.apple.com/shop/refurbished/mac/macbook-pro
https://www.google.com/about/datacenters/gallery/#the-dalles-pipes
https://elasjoliedotcom.wordpress.com/2011/03/04/theoretical-and-practical-knowledge-for-a-teacher/
https://mixkit.co/free-sound-effects/arcade/
https://mixkit.co/license/#sfxFree
http://Babbage's%20Analytical%20Engine%20Science%20Museum,%20London%20CC%20BY-SA%202.0%20https://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg
https://creativecommons.org/licenses/by/2.0/
https://www.cleanfuture.co.in/2019/03/27/finally-a-dna-computer-that-can-actually-be-reprogrammed/
https://stock.adobe.com/images/black-hole-or-gravity-grid-with-glowing-ball-or-sun-in-80s-synthwave-and-style/258249897
https://stock.adobe.com/enterprise-conditions#educationLicenses

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

iPhone 14 Pro Max Apple

Samsung Galaxy Z Samsung

IBM Summit Supercomputer Oak Ridge National Laboratories

Quantum Computer Erik Lucero / Google

Conway’s Game of Life Wikimedia CC BY-SA 3.0

Quantum Computing Logo Adobe Stock education license

DNA Computer DNews

Liar’s Paradox sketchplanations

Red Button, Blue Button Martin Svatoš

Light Bulb Idea Clker-Free-Vector-Images Pixabay

On Computable Numbers Alan Turing

https://www.t-mobile.com/cell-phone/apple-iphone-14-pro-max
https://www.att.com/buy/phones/samsung-galaxy-z-flip4.html
https://www.ibm.com/blogs/think/2018/11/fueling-the-hpc-transformation-with-ai/
https://www.science.org/content/article/quantum-computers-take-key-step-toward-curbing-errors
https://commons.wikimedia.org/wiki/File:Game_of_life_animated_glider_2.gif
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://stock.adobe.com/images/quantum-computer-icon-in-filled-outline-style/449229778
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=_O-kLA3uEyA
https://sketchplanations.com/the-liar-paradox
https://mediationblog.kluwerarbitration.com/2017/10/20/mediators-liars-part-1/
https://pixabay.com/vectors/light-bulb-yellow-idea-electricity-305069/
https://pixabay.com/service/terms/
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230

