
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/5/25 5:15  PM

4.3 DATA STRUCTURES

‣ collections

‣ stacks and queues

‣ linked lists

‣ symbol tables

‣ Java collections framework
https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Data structures

Data structure. Method for organizing data in a computer so that it can be accessed efficiently.

2

Guitar Hero

category data structures

array 1D array, resizing array, binary heap, Bloom filter, ring buffer, …

linked list singly linked list, doubly linked list, blockchain, …

tree binary search tree, k-d tree, Merkle tree, B-tree, decision tree, …

composite 2D array, hash table, tensor, sparse matrix, graph, …

0 1 2 3

Collections

A collection is a data type that stores a group of related items.

3

collection core operations data structure

stack PUSH, POP
singly linked list

resizing array
queue ENQUEUE, DEQUEUE

symbol table PUT, GET, DELETE
binary search tree

hash table
set ADD, CONTAINS, DELETE

⋮ ⋮ ⋮

4.3 DATA STRUCTURES

‣ collections

‣ stacks and queues

‣ linked lists

‣ symbol tables

‣ Java collections frameworkR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Stacks and queues

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, test if empty.

・Intent is clear when we add.

・Which item do we remove?

Stack.	 Remove the item most recently added.

Queue.	 Remove the item least recently added.

add remove

queue

F E D C B A

5

LIFO = “last in first out”

FIFO = “first in first out”

removeadd

stack

A

B

C

D

E

F

Stack API

Stack data type. Our textbook data type for stacks.

Performance requirements. Every operation takes constant time.

6

poppush

A

B

C

D

E

F

public class Stack<Item> description

 Stack() create an empty stack

void push(Item item) add a new item to the stack

Item pop() remove and return the item most recently added

boolean isEmpty() is the stack empty?

int size() number of items on the stack

available with javac-introcs
and java-introcs commands

“generic type parameter”

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Stack warmup client

Goal. Read strings from standard input and print in reverse order.

・Read strings from standard input and push onto stack.

・Pop all strings from stack and print.

7

public class Reverse {
 public static void main(String[] args) {
 Stack<String> stack = new Stack<String>();

 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 stack.push(s);
 }

 while (!stack.isEmpty()) {
 String s = stack.pop();
 StdOut.print(s + " ");
 }
 StdOut.println();

 }
}

pop strings
from stack
and print

push strings
onto stack

create
stack

“type argument”
(can be any reference type)

~/cos126/ds> java-introcs Reverse
I have a dream today
<Ctrl-D>
today dream a have I

Data structures: quiz 1

Which would not be implemented with a stack?  

A. Back button in a browser.

B. Undo in a word processor.

C. Function-call stack.

D. Triage in a hospital.

8

patients processed in order
of severity of injury

(neither LIFO nor FIFO)

function f (x)

input x

output f (x)

Function-call stack demo

9

public static void main(String[] args) {
 double a = Double.parseDouble(args[0]);
 double b = Double.parseDouble(args[1]);
 double c = hypotenuse(a, b);
}}

main()

variable a b c

value 3.0 4.0

public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
}}

hypotenuse(3.0, 4.0)

variable a b

value 3.0 4.0

public static double square(double a) {
 return a*a;
}}

square(3.0)

variable a

value 3.0

function-call stack

Arithmetic expression evaluation

Goal. Write a program to evaluate infix expressions.

Solution. Dijkstra’s two-stack algorithm. [see demo]

Context. An interpreter!

10

operand
(value)

(1 + ((2 + 3) * (4 * 5)))

operator

for simplicity, fully parenthesized and
tokens separated by whitespace

a program that executes
instructions (e.g., infix expressions)

without compiling to machine language

Dijkstra’s two-stack algorithm demo

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result onto the value stack.

11

(1 + ((2 + 3) * (4 * 5)))(1 + ((2 + 3) * (4 * 5)))

operand (value) operator

infix expression
(fully parenthesized)

value stack operator stack

of applying that operator
to those two values

parenthesis

Data structures: quiz 2

How to declare and initialize a stack of doubles in Java?

A. Stack<double> stack = new Stack();

B. Stack<double> stack = new Stack<double>();

C. Stack stack = new Stack();

D. None of the above.

12

primitive type wrapper type

int Integer

double Double

boolean Boolean

char Character
~/cos126/ds> javac-introcs BadStack.java
BadStack.java:3: warning: [rawtypes]
found raw type: Stack
 Stack<int> stack = new Stack();
 ^
 missing type arguments for generic class

BadStack.java:4: error: unexpected type
 Stack<int> stack = new Stack<int>();
 ^
 required: reference
 found: int

...

Stack<Double> = new Stack<Double>();

Arithmetic expression evaluation: Java implementation

13

public class Evaluate {
 public static void main(String[] args) {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();

 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) /* no-op */ ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")")) {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }

 StdOut.println(vals.pop());
 }
}

~/cos126/ds> java-introcs Evaluate
(1 + 2)
3.0

~/cos126/ds> java-introcs Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

for stack of primitive type,
need to use “wrapper” type

careful with non-commutative
operators such as − and /

(Java evaluates functions left-to-right)

fully parenthesized and
tokens separated by whitespace

token is a number

result is last element of stack
(assuming valid infix expression)

Arithmetic expression evaluation: correctness

Q. Why correct?

A. When algorithm encounters an operator surrounded by two values within parentheses,

 it leaves the result on the value stack.

as if the original input were:

Repeating the argument:

Extensions. More operators, precedence order, associativity, …

14

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))

(1 + 100)

101

Stack-based programming languages

Observation 1. Dijkstra’s two-stack algorithm computes the same value if each operator occurs

after the two corresponding operands.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or “reverse Polish” notation (RPN).

Applications. PostScript, PDF, Java virtual machine, RPL, …

15

1 2 3 + 4 5 * * +

(1 ((2 3 +) (4 5 *) *) +)

every right parenthesis is now
preceded by an operator

(1 + ((2 + 3) * (4 * 5)))

operator after operands

Queue API

Queue data type. Our textbook data type for queues.

Performance requirements. Every operation takes constant time.

16

enqueue dequeueF E D C B AGH

public class Queue<Item> description

 Queue() create an empty queue

void enqueue(Item item) add a new item to the queue

Item dequeue() remove and return the item least recently added

boolean isEmpty() is the queue empty?

int size() number of items on the queue

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

4.3 DATA STRUCTURES

‣ collections

‣ stacks and queues

‣ linked lists

‣ symbol tables

‣ Java collections frameworkR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Stack implementation with a linked list

Q. How to implement a stack (or queue)?

Main challenge. Don’t know how many items will be on the stack.

An elegant solution. Use a singly linked list.

・A node contains an item and a reference to the next node in the sequence.

・Maintain reference first to first node.

・Push new item before first.

・Pop item from first.

18

first

today dream a have I null

most recently added

!

otherwise, could used an array

dream
a

have
first

I

null

singly linked list

Stack implementation with a linked list: pop

19

save item to return

String item = first.item;

delete first node

first = first.next;

return saved item

return item;

garbage collector reclaims memory
when no remaining references

dream
a

have

first

I

null

nested class

private class Node {
 private String item;
 private Node next;
}

Node

item
next node

Stack implementation with a linked list: push

20

save a link to the list

Node oldFirst = first;

create a new node at the front

first = new Node();

initialize the instance variables in the new Node

first.item = "dream";
first.next = oldFirst;

dream
a

have
first

I

null

oldFirst

a
have

I

null

oldFirst

null

null
first

a
havefirst

I

null

oldFirst

item
next node

Node

nested class

private class Node {
 private String item;
 private Node next;
}

Possible memory representation

Each Node object stores a String and a reference to the next Node in the linked list.

21

memory
address

memory representation
(using poetic license)Node object null reference

I 0

318

dream 286

304

have 318

330

a 330

286

dream
a

have
first

I

null

actually, a reference to a String
(poetic license)

first

304

object reference
(holds memory address of Node object)

public class StackOfStrings {
 private Node first;

 private class Node {
 private String item;
 private Node next;
 }

 public class Stack() {
 first = null;
 }

 public void push(String item) {
 Node oldFirst = first;
 first = new Node();
 first.item = item;
 first.next = oldFirst;
 }

 public String pop() {
 String item = first.item;
 first = first.next;
 return item;
 }
}

Stack implementation with a linked list

22

private nested class
(not accessible outside this file)

no Node constructor explicitly defined ⇒
Java supplies default no-argument constructor

for simplicity, we assume items are of type String

code just beyond scope of COS 126

4.3 DATA STRUCTURES

‣ collections

‣ stacks and queues

‣ linked lists

‣ symbol tables

‣ Java collections frameworkR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Symbol tables

Key–value pair abstraction.

・Insert a value with specified key.

・Given a key, search for the corresponding value.

Ex. DNS lookup.

・Insert domain name with specified IP address.

・Given domain name, find corresponding IP address.

24
key

domain name IP address

www.cs.princeton.edu 128.112.136.61

goprincetontigers.com 67.192.28.17

wikipedia.com 208.80.153.232

google.com 172.217.11.46

value

also known as maps (Java),
dictionaries (Python),

and associative arrays (Perl)

Symbol table applications

25

application purpose of search key value

dictionary find definition word definition

compiler find properties of a variable variable name type and value

DNS find IP address domain name IP address

reverse DNS find domain name IP address domain name

file system find file on disk filename location on disk

file share find song to download name of song computer ID

web search find relevant web pages keyword list of page names

Symbol table API

Symbol table data type. Our textbook data type for symbol tables.

Performance requirements. put(), get(), remove(), and contains() take logarithmic time.

 public class ST<Key, Value> description

ST() create an empty symbol table

void put(Key key, Value val) insert key–value pair

Value get(Key key) value paired with key

boolean contains(Key key) is there a value paired with key?

Iterable<Key> keys() all the keys in the symbol table

boolean isEmpty() is the symbol table empty?

int size() number of key–value pairs

 ⋮

26

a[key] = val;

a[key]

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

generalizes arrays
(keys need not be integers between 0 and n−1)

Key type must be comparable
(String, Integer, Double, …)

Data structures: quiz 3

What does the following code fragment print?

A. 1.0

B. 1.5

C. 2.5

D. Run-time exception.

27

key value

a 1.0

b 1.5

2.5

ST<String, Double> st = new ST<String, Double>();

st.put("a", 1.0);

st.put("b", 1.5);

st.put("a", st.get("a") + st.get("b"));

double value = st.get("a");

StdOut.println(value);

overwrites the old value
associated with "a"
with the new value

Goal. Convert text message with emojis (or text abbreviations) to English.

・Create symbol table that maps from emoji (or text abbreviation) to English.

・Read lines from standard input, replacing emojis (or text abbreviations) with expansions.

~/Desktop/ds> more princeton.tsv

NCW	 New College West

RoMa	 Rockey–Mathey dining hall

COS	 Computer Science

AB	 Bachelor of Arts

concentration	 major

certificate	 minor

precept	 section

JP	 Junior Paper

FSI	 Freshman Scholars Institute

FLI	 First-generation/Low-Income

CA	 Community Action

OA	 Outdoor Action

CPS	 Counseling and Psychological Services

RCA	 Residential College Advisor

Harvard	 second tier school in Boston

...

~/Desktop/ds> more emojis.tsv

😀	 grinning face

👿	 angry face with horns

❤	 red heart

👍	 thumbs up: medium-dark skin tone

🔥	 fire

🎉	 party popper

...

~/Desktop/ds> more sms.tsv

TL;DR	 Too Long, Didn’t Read

AFAIK	 As far As I Know

YOLO	 You Only Live Once

ROFL	 Rolling On the Floor Laughing

SOML	 Story Of My Life

IRL	 In Real Life

IMHO	 In My Humble/Honest Opinion

...

Text-to-English

28

~/Desktop/ds> java-introcs TextToEnglish emojis.tsv

We didn't start the 🔥

We didn't start the 🔥 [fire]

I ❤ COS 126! Kevin is the 🐐
I ❤ [red heart] COS 126! Kevin is the 🐐 [goat]

~/Desktop/ds> java-introcs TextToEnglish sms.tsv

Almost EOL CUS

Almost EOL [End of Lecture] CUS [See You Soon]

tab-separated
values (TSV)

public class TextToEnglish {
 public static void main(String[] args) {

 // build symbol table that maps from abbreviation to expansion
 ST<String, String> st = new ST<String, String>();
 In in = new In(args[0]);
 while (in.hasNextLine()) {
 String line = in.readLine();
 String[] fields = line.split("\\t");
 String abbreviation = fields[0];
 String expansion = fields[1];
 st.put(abbreviation, expansion);
 }

 ...

 }
}

Text-to-English converter: build symbol table

29

create symbol table with
string keys (abbreviations)

and string values (expansions)

split line into fields
(using tab as delimiter)

public class TextToEnglish {
 public static void main(String[] args) {

 ...

 // process lines of text, replacing abbreviations with expansions
 while (StdIn.hasNextLine()) {
 String line = StdIn.readLine();
 String[] words = line.split(" ");
 for (int i = 0; i < words.length; i++) {
 StdOut.print(words[i] + " ");
 if (st.contains(words[i])) {
 StdOut.print("[" + st.get(words[i]) + "]" + " ");
 }
 }
 StdOut.println();
 }

 }
}

Text-to-English converter: process lines of text

30

print expansion
if word is in symbol table

(delimiting with square braces)

split line into words

4.3 DATA STRUCTURES

‣ collections

‣ stacks and queues

‣ linked lists

‣ symbol tables

‣ Java collections frameworkR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

System libraries

Textbook libraries. Collections for stacks, queues, symbol tables, sets, …

Java collections framework. Collections for lists, symbol tables (maps), sets, …

32

collection core operations introcs.jar java.util

stack PUSH, POP Stack

Queue

java.util.Stack

java.util.LinkedList

java.util.ArrayListqueue ENQUEUE, DEQUEUE

symbol table PUT, GET, DELETE ST
java.util.TreeMap

java.util.HashMap

set ADD, CONTAINS, DELETE SET
java.util.TreeSet

java.util.HashSet

⋮ ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

provides superset of
stack/queue operations

Java collections framework: lists

java.util.LinkedList. Java collections framework data type for lists.

Performance requirements. “Core” operations take constant time.

33

public class LinkedList<Item> description running time
(worst case)

 LinkedList() create an empty list Θ(1)

void addFirst(Item item) add a new item to the beginning of list Θ(1)

void addLast(Item item) add a new item to the end of list Θ(1)

Item removeFirst() remove and return item at beginning of list Θ(1)

Item removeLast() remove and return item at end of list Θ(1)

boolean isEmpty() is the list empty? Θ(1)

int size() number of items in the list Θ(1)

Item get(int index) return item at specified position in list Θ(n)

 ⋮

but many other LinkedList operations do not (!)

generalizes stacks and queues

Java collections framework: symbol tables

java.util.TreeMap. Java collections framework data type for symbol tables (maps).

Performance requirements. “Core” operations take logarithmic time.

34

public class TreeMap<Key, Value> description running time
(worst case)

TreeMap() create an empty symbol table Θ(1)

Value put(Key key, Value val) insert key–value pair Θ(log n)

Value get(Key key) value paired with key Θ(log n)

boolean containsKey(Key key) is there a value paired with key? Θ(log n)

void remove(Key key) remove key (and associated value) Θ(log n)

Set<Key> keySet() all the keys in the symbol table Θ(n)

boolean isEmpty() is the symbol table empty? Θ(1)

int size() number of key–value pairs Θ(1)

 ⋮

similar to API for ST

Enhanced for loop (foreach loop)

Enhanced for loop. A second form of for loop designed to iterate over collections (and arrays).

35

LinkedList<String> list = new LinkedList<String>();
list.addLast("I");
list.addLast("have");
list.addLast("a");
list.addLast("dream");

for (String s : list) {
 StdOut.println(s);
}

enhanced for loop with a java.util.LinkedList

iterates over list
elements in list order

double[] values = { 0.0, 2.0, 3.0, 6.125, 4.5 };
double sum = 0.0;
for (double x : values) {
 sum += x;
}

enhanced for loop with an array

iterates over array
elements in array order

TreeMap<String, Double> map = new TreeMap<String, Double>();
map.put("Hydrogen", 1.01);
map.put("Helium", 4.00);
map.put("Lithium", 6.94);
...

for (String s : map.keySet()) {
 StdOut.println(s + " " + map.get(s));
}

iterates over symbol table
keys in sorted order

enhanced for loop with a java.util.TreeMap

Concordance

A concordance is a list of every occurrence of each word in a text, along with surrounding context.

36

~/Desktop/ds> java-introcs Concordance alice.txt 5

hole

 12: chapter i down the rabbit hole alice was beginning to get

 266: pop down a large rabbit hole under the hedge in another

 293: get out again the rabbit hole went straight on like a

 1267: much larger than a rat hole she knelt down and looked

 6809: hadn’t gone down that rabbit hole and yet and yet it’s

flamingo

17067: first was in managing her flamingo she succeeded in getting its

17458: then alice put down her flamingo and began an account of

17931: only difficulty was that her flamingo was gone across to the

17967: time she had caught the flamingo and brought it back the

18768: about the temper of your flamingo shall i try the experiment

hippopotamus

 3567: must be a walrus or hippopotamus but then she remembered how

query word
context window radius

context window

indices where
query word

appears

Concordance

A concordance is a list of every occurrence of each word in a text, along with surrounding context.

Pre-computational age. Compiled only for works of special importance:

・Vedas.

・Bible.

・Qur’an.

・Works of Shakespeare.

・...

Computational age. Any COS 126 student can create one!

Spotlight search (iOS or OS X). Essentially a concordance of files on your phone/computer.

Google search. Essentially a concordance of the web.

37

with clever algorithm
to rank results

Data structures: quiz 4

What should the declared type be for a symbol table for concordance?  

A. TreeMap<String, Integer>

B. TreeMap<Integer, String>

C. TreeMap<String, LinkedList<Integer>>

D. TreeMap<LinkedList<Integer>, String>

38

word indices in text

hole [12, 266, 293, 1267, 6809]

flamingo [17067, 17458, 17931, 17967, 18768]

hippopotamus [3567]

⋮ ⋮

from [423, 1090, 1586, …, 26169]

zigzag [10115]

key
(string)

value
(list of integers)

import java.util.LinkedList;
import java.util.TreeMap;

public class Concordance {
 public static void main(String[] args) {
 In in = new In(args[0]);
 String[] words = in.readAllStrings();

 // build concordance
 TreeMap<String, LinkedList<Integer>> map = new TreeMap<String, LinkedList<Integer>>();
 for (int i = 0; i < words.length; i++) {
 String s = words[i];

 if (!map.containsKey(s)) {
 map.put(s, new LinkedList<Integer>());
 }

 LinkedList<Integer> list = map.get(s);
 list.addLast(i);
 }

 ⋮

Concordance implementation: build concordance

39

get list associated with word
add index of word to list

first occurrence of word

read all words in file

access Java collections libraries

public class Concordance {
 public static void main(String[] args) {

 ⋮
 int context = Integer.parseInt(args[1]);

 // process queries
 while (!StdIn.isEmpty()) {
 String query = StdIn.readString();
 if (map.containsKey(query)) {
 LinkedList<Integer> list = map.get(query);
 for (int k : list) {
 int start = Math.max(k - context, 0);
 int end = Math.min(k + context, words.length - 1);
 for (int i = start; i <= end; i++) {
 StdOut.print(words[i] + " ");
 }
 StdOut.println();
 }
 }
 }

 }
}

Concordance implementation: process queries

40

print 5 words before and after
(context window)

list of indices where
word appears

context window radius

Collections summary

Fundamental data types.

・Value: collection of objects.

・Operations: add, remove, iterate, size, …

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Symbol table. Associate key–value pairs.

…

COS 126.	 Use pre-existing collection data types.

COS 226.	 Implement your own collections using linked data structures and resizing arrays.

41

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Data Structures Icon Adobe Stock education license

Bushel of Apples Adobe Stock education license

Stack of Sweaters Adobe Stock education license

Long Queue Line Adobe Stock education license

Stack of Books Adobe Stock education license

Red Back Button Adobe Stock education license

Undo Icon Wikimedia MIT license

Triage in ER mainjava.com

Queue of People Adobe Stock education license

RPN Calculator Wikimedia CC BY 2.0

https://stock.adobe.com/images/data-structure-icon-technology-icon/553083661
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/wicker-basket-wooden-bucket-and-wooden-bowl-full-of-green-apples-over-white-transparent-background/667085680
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/people-queuing-up-in-a-long-queue-line/135762482
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/tall-pile-of-books-lots-various-isolated-transparent-background-photo-png-file/546470718
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/back-red-button/87039432
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Icons8_flat_undo.svg
https://en.wikipedia.org/wiki/MIT_License
https://www.mainjava.com/java/core-java/priorityqueue-class-in-java-with-programming-example/
https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Hewlett-Packard_HP-42S,_programmable_calculator_with_RPN_(combined_from_two_images,_cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Dictionary Adobe Stock education license

Java Logo Oracle

Alice in Wonderland Lewis Carroll

Bible Concordance James Strong

Shakespeare Concordance Andrew Becket

https://stock.adobe.com/images/dictionary-on-end/127869258
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://Java%20logo%20https//www.oracle.com/a/ocom/docs/java-licensing-logo-guidelines-1908204.pdf
https://www.goodreads.com/book/show/165932617-alice-in-wonderland
https://www.amazon.com/Strongs-Exhaustive-Concordance-Bible-Strong/dp/1598566938
https://www.amazon.com/Concordance-Shakespeare-distinguished-methodically-illustrations/dp/140215173X

