C O1nN p uter S C 1 cCnce ROBERT SEDGEWICK | KEVIN WAYNE

4.3 DATA STRUCTURES

» collections

. NS\ > stacks and queues
COMPUTER > linked lists
Sc | ENCE

aoi » symbol tables

» Java collections framework

https://introcs.cs.princeton.edu

=lag

[

https://introcs.cs.princeton.edu

Data structures

Data structure. Method for organizing data in a computer so that it can be accessed efficiently.

category data structures
array 1D array, resizing array, binary heap, Bloom filter, ring buffer, ...
\
linked list singly linked list, doubly linked list, blockchain, ... Guitar Hero
tree binary search tree, k-d tree, Merkle tree, B-tree, decision tree, ...
composite 2D array, hash table, tensor, sparse matrix, graph, ...

i--- P —>>0—>0—>0 /7\ O /.\

Collections

A collection is a data type that stores a group of related items.

collection core operations data structure
stack PusH, Pop
singly linked list
resizing array
queue ENQUEUE, DEQUEUE
symbol table PuT, GET, DELETE

set

ADD, CONTAINS, DELETE

binary search tree
hash table

4.3 DATA STRUCTURES

» collection's

> stacks and queues

COMPUTER » linked lists

C I E N C E
S A ~symbol tables

» Java collections framework

https://introcs.cs.princeton.edu

252814

.
=

-y o0
/-

https://introcs.cs.princeton.edu

Stacks and queues

Fundamental data types.

« Value: collection of objects.
« Operations: add, remove, iterate, size, test if empty.
* |Intent is clear when we add.

 Which item do we remove?

add F E D C B A = rernove

add

N

T

> | o N O m

stack

remove

/!

Stack. Remove the item most recently added. «—— LIFO = “last in first out”

Queue. Remove the item least recently added. <—— FiFo = “first in first out”

Stack API

available with javac-introcs

Stack data type. Our textbook data type for stacks. -«

and java-introcs commands

“generic type parameter”

/ push pop

public class Stack<Item> description \ /

Stack() create an empty stack /
F
void push(Item 1tem) add a new item to the stack
E
Item pop () remove and return the item most recently added
D
boolean isEmpty() is the stack empty? C
int size() number of items on the stack B
A

Performance requirements. Every operation takes constant time.

Stack warmup client

Goal. Read strings from standard input and print in reverse order.
« Read strings from standard input and push onto stack.

« Pop all strings from stack and print.

“type argument”
(can be any reference type)

public class Reverse {

public static voi 1n(Stringl[]| args) {

~/cosl26/ds> java-introcs Reverse

Stack<String> stack = new Stack<String>(); < Gral I have a dream today
stack <Ctrl-D>
while (!StdIn.isEmpty()) { today dream a have I
String s = StdIn.readString();
stack.push(s);) push strings
) onto stack

while (!stack.isEmpty()) {

String s = stack.pop(); pop Strings
StdOut.print(s + " "); < from stack
1 and print

StdOut.printin();

Data structures: quiz 1

Which would not be implemented with a stack?

A. Back button in a browser.
B. Undo in a word processor.
C. Function-call stack.

D. Triage in a hospital.

iInput X

function f(x)

l

output f(x)

Function-call stack demo

- double square(double a) {

return a*a;

}

variable a

value 3.0

square(3.0)

hypotenuse(3.0, 4.0)

function-call stack

Arithmetic expression evaluation

Goal. Write a program to evaluate infix expressions.

for simplicity, fully parenthesized and
1 2 3 . 4 * 5
(1+C« T +3) T ())) - tokens separated by whitespace

operand operator
(value)

Solution. Dijkstra’s two-stack algorithm. [see demo]

Context. An interpreter!

|

a program that executes
instructions (e.g ., infix expressions)
without compiling to machine language

10

Dijkstra’s two-stack algorithm demo

Value: push onto the value stack.

Operator: push onto the operator stack. of applying that operator
to those two values

Left parenthesis: ignore. /

Right parenthesis: pop operator and two values; push the result onto the value stack.

infix expression value stack operator stack

(fully parenthesized)

\ \ R

operand (value) operator parenthesis

11

Data structures: quiz 2

How to declare and initialize a stack of doubles in Java?

A.
B.
C.

D.

Stack<double> stack

Stack<double> stack

new Stack():

new Stack<double>():

Stack stack = new Stack();

None of the above.

12

Arithmetic expression evaluation: Java implementation

public class Evaluate
public static void main(String[] args
Stack<String> ops new Stack<String

Stack<Double> vals = new Stack<Double < for stack of primitive type,

need to use “wrapper’” type

while (!StdIn.isEmpty
String s = StdIn.readString

1f s.equals(" ("
else if (s.equals("+" ops.push(s
else 1f (s.equals("*" ops.push(s
else 1f (s.equals(")"
String op = ops.pop
if op.equals("+")) vals.push(vals.pop vals.pop careful with non-commutative
Ise 1f (op.equals("*" vals.push(vals.po vals.po) operators such as - and /
© s . PR sl (Java evaluates functions left-to-right)
else vals.push(Double.parseDouble(s < token is a number

~/cosl26/ds> java-introcs Evaluate

StdOut.printin(vals.po (1+2)
° Pon 3.0 \ fully parenthesized and

\ result is last element of stack tokens separated by whitespace
(assuming valid infix expression)

~/cosl26/ds> java-introcs Evaluate

(1+CC2+3)*C4*5)))
101.0

Arithmetic expression evaluation: correctness

Q. Why correct?

A. When algorithm encounters an operator surrounded by two values within parentheses,

it leaves the result on the value stack.

(1+CC2+3)*C4*5)))

as if the original input were:

(1 +C5*C4*5)))

Repeating the argument:
1+ (CS5=*20))
(1 + 100)
101

Extensions. More operators, precedence order, associativity, ...

14

Stack-based programming languages

Observation 1. Dijkstra’s two-stack algorithm computes the same value if each operator occurs
after the two corresponding operands.

(1+CC2+3)*C4*5)))

(1 CC23+)C45=*=)*)4) = operator after operands

every right parenthesis is now
preceded by an operator

Observation 2. All of the parentheses are redundant! <

123 +45 %%+

Bottom line. Postfix or “reverse Polish” notation (RPN).

Applications. PostScript, PDF, Java virtual machine, RPL, ... Adobgfmpt lizﬁ ="

15

Queue API

Queue data type. Our textbook data type for queues.

enqueue =3 | H F E D C B A — dequeue

public class Queue<Item> description
Queue() create an empty queue
void enqueue (Item 1item) add a new item to the queue
Item dequeue() remove and return the item least recently added
boolean isEmpty () is the queue empty?
int size() number of items on the queue

Performance requirements. Every operation takes constant time.

4.3 DATA STRUCTURES

» collections

Y- B\ Y ~stacks and queues
COMPUTER > linked lists
f SCIENCE
S ~symbol tables

» Java collections framework

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Stack implementation with a linked list

Q. How to implement a stack (or queue)?

Main challenge. Don’t know how many items will be on the stack. -

An elegant solution. Use a singly linked list.

otherwise, could used an array

* A node contains an item and a reference to the next node in the sequence.

« Maintain reference first to first node.

 Push new item before first.

* Pop item from first.

most recently added

!

! ———| today ———

dream

T

first

have

—> null

18

Stack implementation with a linked list: pop

singly linked list

save item to return

String i1tem = first.item;

delete first node

first = first.next;

return saved item

return i1tem;

first

first —

garbage collector reclaims memory
when no remaining references

dream

|

have
T
®
null
have
I
®
null

nested class

private class Node {

private String 1item;
private Node next;

item

> next node

Node

Stack implementation with a linked list:

push

save a link to the list

Node oldFirst = first;

create a hew node at the front

first = new Node();

first

first

oldFirst

\

initialize the instance variables in the new Node

first.item
first.next

"dream";
oldFirst:

first

nested class

item

private class Node {
private String 1item;
private Node next;

> next node

d
> have
® > 1
o >
null
oldFirst
null
> a
null have
® > T
®
null
oldFirst
dream
> a
° have
® > I
®
null

Node

20

Possible memory representation

Each Node object stores a String and a reference to the next Node in the linked list.

_ dream
first —— a
° > have
° >
®
memory
/ address
286 first 304
[a 330 | [304 | [dream [286 |

|

object reference

\

Node object

(holds memory address of Node object)

null

null reference

330

have ‘ 318 ‘

memory representation
(using poetic license)

21

Stack implementation with a linked list

public class StackOfStrings { <
private Node first;

private class Node {
private String item;

private Node next;

public class Stack() {
first = null;

public void push(String item) {
Node oldFirst = first;

first = new Node(); <
first.item = item;
first.next = oldFirst;

public String pop() {
String i1tem = first.item;
first = first.next;
return item;:

}

¥
& code just beyond scope of COS 126

for simplicity, we assume items are of type String

private nested class
(not accessible outside this file)

no Node constructor explicitly defined =

Java supplies default no-argument constructor

22

4.3 DATA STRUCTURES

» collections

) o \ ~stacks and queues
COMPUTER » linked lists

CIENCE
SA - » symbol tables

: : ROBERT SEDGEWICK

TR » Java collections framework

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Symbol tables

Key-value pair abstraction.
also known as maps (Java),

* |nsert a value with specified key. < dictionaries (Python),
and associative arrays (Perl)

* Given a key, search for the corresponding value.

Ex. DNS lookup.

* |nsert domain name with specified IP address.

« Given domain name, find corresponding IP address.

domain name IP address

www.cs.princeton.edu 128.112.136.61
goprincetontigers.com 67.192.28.17

wikipedia.com 208.80.153.232
google.com 172.217.11.46

| |

key value 4

Symbol table applications

application purpose of search key value
dictionary find definition word definition
compiler find properties of a variable variable name type and value
DNS find IP address domain name [P address
reverse DNS find domain name [P address domain name
file system find file on disk filename location on disk
file share find song to download name of song computer 1D

web search find relevant web pages keyword list of page names

Symbol table API

Symbol table data type. Our textbook data type for symbol tables.

Key type must be comparable

k////(String,Integer,Doub1e,”)

public class ST<Key, Value> description
o cate anemprymboliale | STIGTI i
void put(Key key, Value val) insert key—value pair «— a[key] = val;
Value get(Key key) value paired with key <« alkey]
boolean contains(Key key) is there a value paired with key?
Iterable<Key> keys() all the keys in the symbol table

boolean 1sEmpty() is the symbol table empty?

int size() number of key—value pairs

Performance requirements. put(), get(), remove(), and contains() take logarithmic time.

26

Data structures: quiz 3

What does the following code fragment print?

A.

B.

C.

D.

1.0
1.5
2.5

Run-time exception.

ST<String, Double> st = new ST<String, Double>();

st.put("a", 1.0);
st.put("b", 1.5);

St_:)ut("a", St.get(Hall) + St_th(”b”));

double value = st.get("a
StdOut.printin(value)

);

27

Text-to-English

Goal. Convert text message with emojis (or text abbreviations) to English.
* Create symbol table that maps from emoji (or text abbreviation) to English.

« Read lines from standard input, replacing emojis (or text abbreviations) with expansions.

~/Desktop/ds> more emojis.tsv ~/Desktop/ds> java-introcs TextToEnglish emojis.tsv
® grinning face We didn't start the &

% angry face with horns We didn't start the & [fire]
v red heart

thumbs up: medium-dark skin tone I % COS 126! Kevin is the ‘m

fire I W [red heart] COS 126! Kevin is the "™ [goat]

- party popper
‘. tab-separated ~/Desktop/ds> java-introcs TextToEnglish sms.tsv

[TS
values (15V) Almost EOL CUS

Almost EOL [End of Lecture] CUS [See You Soon]

~/Desktop/ds> more sms.tsv

TL;DR Too Long, Didn’t Read

AFAIK As far As I Know

YOLO You Only Live Once

ROFL Rolling On the Floor Laughing
SOML Story Of My Life

IRL In Real Life

IMHO In My Humble/Honest Opinion

28

Textto-English converter: build symbol table

public class TextToEnglish {
public static void main(String[] args) {

ST<String, String> st = new ST<String, String>(); <

In in = new In(Cargs[0]);

while (in.hasNextLine()) {
String line = in.readlLine();
String[] fields = Tine.split("\\t"); <«——
String abbreviation = fields[0];
String expansion = fields[1];
st.put(abbreviation, expansion);

split line into fields
(using tab as delimiter)

create symbol table with
string keys (abbreviations)
and string values (expansions)

29

Text-to-English converter: process lines of text

public class TextToEnglish {
public static void main(String[] args) {

while (StdIn.hasNextLine()) {
String line = StdIn.readLine();
String[] words = Tine.split(" "); < split line into words
for (int 1 = 0; 1 < words.length; 1++) {
StdOut.print(words[i] + " ");
1t (st.contains(words|[i])) {

StdOut.print("[" + st.get(words[i]) + "]" + " "), <

}
StdOut.printin();

print expansion
if word is in symbol table
(delimiting with square braces)

30

COMPUTER "
SCIENCE

| A Inte d p| ry Approach

httpsi//introcs.cs:princeton.edu

4.3 DATA STRUCTURES

> collectionss
~stacks and queuves
> linked lists
~symbol tables

» Java collections framework

https://introcs.cs.princeton.edu

System libraries

Textbook libraries. Collections for stacks, queues, symbol tables, sets, ...

Java collections framework. Collections for lists, symbol tables (maps), sets, ...

collection core operations introcs.jar java.util
java.util.LinkedList <
queue ENQUEUE, DEQUEUE Queue
java.util.TreeMap
symbol table PuT, GET, DELETE ST
java.util.TreeSet
set ADD, CONTAINS, DELETE SET

provides superset of
stack/queue operations

32

Java collections framework: lists

java.util.LinkedList. Java collections framework data type for lists.

running time

public class LinkedList<Item> description
(worst case)

LinkedList() create an empty list O(1)
void addFirst(Item 1tem) add a new item to the beginning of list O(1)
void addLast(Item 1tem) add a new item to the end of list O(1)

< generalizes stacks and queues

Item removeFirst() remove and return item at beginning of list O(1)
Item removelLast() remove and return item at end of list O(1)
boolean 1sEmpty() is the list empty? O(1)
int s1ze() number of items in the list O(1)
Item get(int index) return item at specified position in list O(n)

Performance requirements. “Core” operations take constant time. -« but many other LinkedList operations do not (!)

Java collections framework: symbol tables

java.util.TreeMap. Java collections framework data type for symbol tables (maps).

running time

public class TreeMap<Key, Value> description TS s

TreeMap() create an empty symbol table O(1)

Value put(Key key, Value val) insert key—value pair O(log n)

Value get(Key key) value paired with key O(log n)

boolean containsKey(Key key) is there a value paired with key? O(log n)

void remove(Key key) remove key (and associated value) O(log n)
Set<Key> keySet() all the keys in the symbol table O(n)
boolean 1sEmpty() is the symbol table empty? O(1)
int size() number of key—value pairs O(1)

Performance requirements. “Core” operations take logarithmic time.

similar to API for ST

34

Enhanced for loop (foreach loop)

Enhanced for loop. A second form of for loop designed to iterate over collections (and arrays).

LinkedList<String> 1ist = new LinkedList<String>(); TreeMap<String, Double> map = new TreeMap<String, Double>();
T1st.addLast("I"); map.put("Hydrogen", 1.01);
list.addLast("have"); map.put("Helium", 4.00);
11st.addLast("a"); map.put("Lithium”, 6.94);
list.addLast("dream™); e iterates over symbol table
keys in sorted order
for (String s : list) { < nen”asO%WJmT for (String s : map.keySet()) {‘“///// :
: elements in list order _
StdOut.println(s); StdOut.printin(s + " " + map.get(s));
¥ ¥
enhanced for loop with a java.util.LinkedList enhanced for loop with a java.util.TreeMap

double[] values = { 0.0, 2.0, 3.0, 6.125, 4.5 };

double sum = 0.0;

for (double x : values) { <«
sum += X;

iterates over array
elements in array order

enhanced for loop with an array

Concordance

A concordance is a list of every occurrence of each word in a text, along with surrounding context.

indices where
query wor
appears

——

~/Desktop/ds> java-introcs Concordance alice.txt 5 <«—— context window radius

hole «—— query word

12: chapter 1 down the rabbit
266: pop down a large rabbit
293: get out again the rabbit

1267: much larger than a rat
6809: hadn’t gone down that rabbit

hole alice was beginning to get
hole under the hedge 1n another
hole went straight on like a
hole she knelt down and looked

hole and yet and yet 1t’s

—_ context window —]

flamingo

17067 : first was in managing her
17458: then alice put down her
17931: only difficulty was that her
17967 : time she had caught the
18768: about the temper of your

hippopotamus

3567: must be a walrus or

flamingo she succeeded 1n getting 1its
flamingo and began an account of
flamingo was gone across to the
flamingo and brought it back the

flamingo shall 1 try the experiment

hippopotamus but then she remembered how

ALICE IN

LEWIS CARROLL

36

Concordance

A concordance is a list of every occurrence of each word in a text, along with surrounding context.

Pre-computational age. Compiled only for works of special importance:

» Vedas.

. STRONG'S
o B I b I e . EXH/T(I{[S%Vf ﬁ)f%{DANCE
* Qur’an.

« Works of Shakespeare.

Computational age. Any COS 126 student can create one!
Spotlight search (iOS or OS X). Essentially a concordance of files on your phone/computer.

Google search. Essentially a concordance of the web.

AN

with clever algorithm
to rank results

Data structures: quiz 4

What should the declared type be for a symbol table for concordance?

A. TreeMap<String, Integer>
B. TreeMap<Integer, String>
C. TreeMap<String, LinkedList<Integer>>

D. TreeMap<LinkedList<Integer>, String>

38

Concordance implementation: build concordance

import java.util.LinkedList;
import java.util.TreeMap;

< access Java collections libraries

public class Concordance 1
public static void main(String[] args) {
In 1in = new In(Cargs|(0]);
String[] words = in.readAl11Strings();

< read all words in file

TreeMap<String, LinkedList<Integer>> map = new TreeMap<String, LinkedList<Integer>>();
for (int 1 = 0; 1 < words.length; 1++) {
String s = words|[1];

if (Imap.containsKey(s)) {

map.put(s, new LinkedList<Integer>()); < first occurrence of word
h
LinkedList<Integer> 1list = map.get(s); < get list associated with word
list.addlLast(1); < add index of word to list

39

Concordance implementation: process queries

public class Concordance {
public static void main(String[] args) {

int context = Integer.parselnt(args(1]); <« context window radius

while (!StdIn.isEmpty()) { list of indices where
String query = StdIn.readString(); word appears
if (map.containsKey(query)) { K////
LinkedList<Integer> list = map.get(query);
for (int k : 1ist) {
1nt start = Math.max(k - context, 0);
1nt end = Math.min(k + context, words.length - 1);
for (int 1 = start; 1 <= end; 1++) {

StdOut.print(words[i] + " ");

}
StdOut.printin();

print S words before and after
(context window)

40

Collections summary

Fundamental data types.
« Value: collection of objects.

 Operations: add, remove, iterate, size, ...

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

Symbol table. Associate key-value pairs.

COS 126. Use pre-existing collection data types.

COS 226. Implement your own collections using linked data structures and resizing arrays.

41

Credits

media source license

Data Structures Icon Adobe Stock education license
Bushel of Apples Adobe Stock education license
Stack of Sweaters Adobe Stock education license
Long Queue Line Adobe Stock education license
Stack of Books Adobe Stock education license
Red Back Button Adobe Stock education license

Undo Icon Wikimedia MIT license

Triage in ER mainjava.com

Queue of People Adobe Stock education license

RPN Calculator Wikimedia CCBY20

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/data-structure-icon-technology-icon/553083661
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/wicker-basket-wooden-bucket-and-wooden-bowl-full-of-green-apples-over-white-transparent-background/667085680
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/stack-of-sweaters/28195940
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/people-queuing-up-in-a-long-queue-line/135762482
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/tall-pile-of-books-lots-various-isolated-transparent-background-photo-png-file/546470718
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/back-red-button/87039432
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Icons8_flat_undo.svg
https://en.wikipedia.org/wiki/MIT_License
https://www.mainjava.com/java/core-java/priorityqueue-class-in-java-with-programming-example/
https://stock.adobe.com/images/queue-people-are-standing-in-line-vector-image-of-people-from-the-back-a-crowd-of-people/479350972
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Hewlett-Packard_HP-42S,_programmable_calculator_with_RPN_(combined_from_two_images,_cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Credits

media source license
Dictionary Adobe Stock education license
Java Logo Oracle
Alice in Wonderland Lewis Carroll
Bible Concordance James Strong
Shakespeare Concordance Andrew Becket

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/dictionary-on-end/127869258
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://Java%20logo%20https//www.oracle.com/a/ocom/docs/java-licensing-logo-guidelines-1908204.pdf
https://www.goodreads.com/book/show/165932617-alice-in-wonderland
https://www.amazon.com/Strongs-Exhaustive-Concordance-Bible-Strong/dp/1598566938
https://www.amazon.com/Concordance-Shakespeare-distinguished-methodically-illustrations/dp/140215173X

