
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/2/25 10:21  PM

4.2 ALGORITHMS

‣ sequential search

‣ binary search

‣ insertion sort

‣mergesort

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Intuition. An algorithm is like a recipe.

Algorithms

2

recipe

but unambiguous and mechanically executable

Algorithms

Algorithm. Step-by-step procedure for solving a problem.

・Takes input; produces output.

・Unambiguous and mechanically executable (e.g., in Java).

3

formalized by
Turing machines

(stay tuned)

category famous algorithms

historic Euclid’s gcd algorithm, gradient descent, Newton’s method

sorting and searching binary search, insertion sort, mergesort

graphs DFS, BFS, Dijkstra, Kruskal, Ford–Fulkerson

linear algebra Gaussian elimination, simplex method, QR method, PageRank

scientific computing Smith–Waterman, Metropolis–Hastings, k-means, FFT

machine learning A*-search, neural network, transformer, AlphaFold

this lecture

4.2 ALGORITHMS

‣ sequential search

‣ binary search

‣ insertion sort

‣mergesort
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Sequential search

Problem. Given an array of n elements and a search key, find index of search key in array.

Sequential search. Check each element in array until match is found.

5

14 43 96 53 25 64 51 84 95

0 1 2 3 4 5 6 7 8

 public static int sequentialSearch(String[] a, String key) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 if (a[i].equals(key)) return i;
 }
 return -1;
 }

search 25

return -1 to indicate
key is not in array

25

for now, we’ll assume
String keys

Algorithms: quiz 1

In the worst case, how many equality tests (or array accesses) does sequential search 
make to search for a key in an array of length n?

A. Θ(1)

B. Θ(log n)

C. Θ(n)

D. Θ(n2)

6

best case

typical and worst case

Sequential search

Problem. Given an array of n elements and a search key, find index of search key in array.

Sequential search (linear search). Check each element in array until match is found.

Cost model.	 Equality tests (or array accesses).

Performance.	 Sequential search solves the problem using ≤ n equality tests.

7

14 43 96 53 25 64 51 84 95

0 1 2 3 4 5 6 7 8

25search 25

4.2 ALGORITHMS

‣ sequential search

‣ binary search

‣ insertion sort

‣mergesort
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Binary search

Problem. Given a sorted array of n elements and a search key, find index of search key in array.

Binary search. Compare search key with middle element.

・Too small, go left.

・Too big, go right.

・Equal, found.

9

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

sorted array

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

10

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

sorted array

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

11

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

12

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

13

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

14

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

midsuccessful search for 33

return 4

lo hi

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

15

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

unsuccessful search for 90

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

16

lo

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

unsuccessful search for 90

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

17

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

unsuccessful search for 90

lo himid

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

18

10 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

unsuccessful search for 90 mid

lo hi

return -1

Binary search: Java implementation

Invariant. If key appears in array a[], then a[lo] ≤ key ≤ a[hi].

 public static int binarySearch(String[] a, String key) {
 int lo = 0, hi = a.length - 1;
 while (lo <= hi) {
 int mid = lo + (hi - lo) / 2;
 int compare = key.compareTo(a[mid]);
 if (compare < 0) hi = mid - 1;
 else if (compare > 0) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

19

essentially equivalent to
mid = (lo + hi) / 2

(but avoids arithmetic overflow)

return zero (if equal),
negative integer (if less),

positive integer (if greater)

Algorithms: quiz 2

In the worst case, how many compares (or array accesses) does binary search make
to search for a key in a sorted array of length n?

A. Θ(1)

B. Θ(log n)

C. Θ(n)

D. Θ(n2)

20

best case

typical and worst case

Binary search: analysis

Problem. Given a sorted array of n elements and a search key, find index of search key in array.

Proposition. Binary search solves problem using ≤ 1 + log2 n compares.

Pf.

・Each iteration of while loop:

– calls compareTo() once

– decreases the length of subarray under

consideration by at least a factor of 2

21

slightly better than 2×,
due to elimination of a[mid] from subarray

(or early termination of while loop)

1 + log2 n

n → n /2 → n /4 → n /8 → ⋯ → 2 → 1
can happen at most 1 + log2 n times. Why?

Sequential search vs. binary search: empirical analysis

Running time and energy estimates (approximate):

・CPU core executes 108 compares/second.

・CPU core consumes 18 watts power.

Resources required. [on array of length n = 109]

Bottom line. Great algorithms can replace server farms.

22

queries/hour CPU cores power

thousand 2.78 50 watts

million 2.78 thousand 50 kilowatts

billion 2.78 million 50 megawatts

sequential search Θ(n)

queries/hour CPU cores power

million – –

billion 0.083 1.5 watts

trillion 83 1.5 kilowatts

binary search Θ(log n)

500K ChatGPT
queries per hour
 (≈ 1 gigawatt)

about 33M times more efficient
(109 vs. log2 109)

4.2 ALGORITHMS

‣ sequential search

‣ binary search

‣ insertion sort

‣mergesort
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Sorting problem

Problem. Given an array of n elements, rearrange in ascending order by key.

24

Granger Hermione Gryffindor 1998

 Last ▾ First House Year

Weasley Ginny Gryffindor 1999

Weasley Ron Gryffindor 1998

Parkinson Pansy Slytherin 1998

Longbottom Neville Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Chang Cho Ravenclaw 1997

Abbott Hannah Hufflepuff 1998

Malfoy Draco Slytherin 1998

Potter Harry Gryffindor 1998

sorting hat

element

key

Sorting problem

Problem. Given an array of n elements, rearrange in ascending order by key.

25

element

key

Weasley Ginny Gryffindor 1999

Weasley Ron Gryffindor 1998

Parkinson Pansy Slytherin 1998

Longbottom Neville Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Granger Hermione Gryffindor 1998

Chang Cho Ravenclaw 1997

Abbott Hannah Hufflepuff 1998

Malfoy Draco Slytherin 1998

Potter Harry Gryffindor 1998

sorted by key

 Last ▾ First House Year

sorting hat

Sorting applications

26

Library of Congress order

alphabetical order

chronological order

numerical order (descending)

suit and rank order

2

2

4

4

Q

Q

5

5

K

K

4

4

8

8

9

9

Q

Q

5

5

9

9

10

10

A

A

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

27

initial array

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

28

initial array

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

29

i

not yet seen

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

30

in ascending order not yet seen

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

31

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

32

not yet seenin ascending order

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

33

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

34

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

35

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

36

i

not yet seenin ascending order

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

37

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

38

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

39

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

40

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

41

i

not yet seenin ascending order

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

42

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

43

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

44

i

not yet seenin ascending order

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

45

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

46

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

47

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

48

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

49

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

50

i

not yet seenin ascending order

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

51

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

52

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

53

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

54

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

55

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

56

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

57

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

58

i

not yet seenin ascending order

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

59

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

60

i

not yet seen

j

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

61

i

not yet seenin ascending order

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

62

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

63

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

64

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

65

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

66

ij

Insertion sort demo

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its immediate left.

67

sorted array

Insertion sort

Algorithm. For each index i = 0 to n − 1 :

・Let x be the element at index i.

・Repeatedly exchange x with each larger element to its left.

Invariants.

68

sorted i untouched

≤ x > x x …

before iteration i

sorted untouched

≤ x x > x …

after iteration i

Insertion sort: Java implementation

69

public class Insertion {

 public static void sort(String[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(String v, String w) {
 return v.compareTo(w) < 0;
 }

 private static void exch(String[] a, int i, int j) {
 String temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }

}

breaks out of
innermost loop

return zero (if equal),
negative integer (if less),

positive integer (if greater)

Algorithms: quiz 3

How many compares does insertion sort make to sort an array of n distinct keys in reverse order?

A. Θ(1)

B. Θ(log n)

C. Θ(n)

D. Θ(n2)

70

typical and worst case

best case (already sorted)

Insertion sort: analysis

Sorting cost model. Number of compares (or array accesses).

Proposition. Insertion sort never makes more than ~ ½ n2 compares to sort an array of length n.

Pf.

・The worst case is a reverse-sorted array of n distinct keys.

・In iteration i, insertion sort makes i compares.

・Total number of compares = 0 + 1 + 2 + … + (n − 1) = ½ n (n−1) .

71

4.2 ALGORITHMS

‣ sequential search

‣ binary search

‣ insertion sort

‣mergesort
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Mergesort overview

Basic plan.

・Divide array into two halves.

・Recursively sort left half.

・Recursively sort right half.

・Merge two sorted halves.

73

input M E R G E S O R T E X A M P L E

sort left half E E G M O R R S T E X A M P L E

sort right half E E G M O R R S A E E L M P T X

merge results A E E E E G L M M O P R R S T X

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

74

E E G M R A C E R T

lo mid mid+1 hi

sorted sorted

a[]

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

75

E E G M R A C F R T

mid mid+1

sorted sorted

a[]

lo hi

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

76

E E G M R A C F R T

lo mid mid+1 hi

copy to auxiliary array

aux[]

E E G M R A C F R Ta[]

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

E E G M R A C F R Ta[]

77

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

compare minimum in each subarray

E E G M R A C F R Taux[]

E E G M R A C F R Ta[]

A

78

j

k

i

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

compare minimum in each subarray

E E G M R A C F R Taux[]

E E G M R A C F R Ta[] A

79

ji

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

i j

A E G M R A C F R Ta[]

C

80

compare minimum in each subarray

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

i j

A E G M R A C F R Ta[]

compare minimum in each subarray

C

81

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C G M R A C F R Ta[]

E

82

compare minimum in each subarray

k

i j

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C G M R A C F R Ta[]

compare minimum in each subarray

E

83

ji

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E M R A C F R Ta[]

E

84

compare minimum in each subarray

i j

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E M R A C F R Ta[]

compare minimum in each subarray

E

85

j

k

i

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E R A C F R Ta[]

F

86

compare minimum in each subarray

k

i j

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E R A C F R Ta[]

compare minimum in each subarray

F

87

i

k

j

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F A C F R Ta[]

G

88

compare minimum in each subarray

k

i j

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F A C F R Ta[]

compare minimum in each subarray

G

89

j

k

i

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

A C E E F G C F R Ta[]

Merging demo

90

E E G M R A C F R Taux[] M

compare minimum in each subarray

k

i j

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G C F R Ta[]

compare minimum in each subarray

M

91

j

k

i

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G M F R Ta[]

R

92

compare minimum in each subarray

k

ji

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G M F R Ta[]

compare minimum in each subarray

R

93

ji

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G M R R Ta[]

one subarray exhausted, take from other

R

94

i j

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G M R R Ta[]

one subarray exhausted, take from other

R

95

i j

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G M R R Ta[]

T

96

one subarray exhausted, take from other

i j

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R Taux[]

A C E E F G M R R Ta[]

one subarray exhausted, take from other

T

97

i j

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C F R T

both subarrays exhausted, done

A C E E F G M R R T

i j

k

98

a[]

aux[]

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

A C E E F G M R R Ta[]

sorted

99

lo hi

Merging: Java implementation

100

private static void merge(String[] a, String[] aux, int lo, int mid, int hi) {

 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++) {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }

}

copy

merge

i j

k

E E G M R A C E R Taux[]

lo himid

a[] A C E E E G

increments variable after
using it to index array

Mergesort: Java implementation

101

lo hi

10 11 12 13 14 15 16 17 18 19

public class Merge {
 private static void merge(...) {
 /* as before */
 }

 private static void sort(String[] a, String[] aux, int lo, int hi) {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, aux, lo, mid);
 sort(a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
 }

 public static void sort(String[] a) {
 String[] aux = new String[a.length];
 sort(a, aux, 0, a.length - 1);
 }
}

mid

create (and reuse)
auxiliary array

Mergesort: trace

102

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Insertion sort vs. mergesort: empirical analysis

Running time estimates (approximate):

・Laptop executes 108 compares/second.

・Supercomputer executes 1012 compares/second.

Bottom line. Great algorithms are better than supercomputers.

103

n laptop super

thousand instant instant

million 2.8 hours 1 second

billion 317 years 1 week

insertion sort

n laptop super

thousand instant instant

million 1 second instant

billion 18 minutes instant

mergesort

Algorithms: quiz 4

In the worst case, how many compares are needed to merge two sorted subarrays of length n / 2
to produce a sorted array of length n ?

A. n / 2

B. n – 1

C. Θ(n log n)

D. Θ(n2)

104

worst case

best case (already sorted)

A B C H D E F G

worst-case input (n - 1 compares)

a0 a1 a2 a3 b0 b1 b2 b3

merging two sorted arrays, each of length n/2

Mergesort analysis

Proposition. Mergesort makes ≤ n log2 n compares to sort any array of length n.

Pf by picture. [assuming n is a power of 2]

105

log2 n

C (n) ≤ n log2 n

≤ n = n

≤ 2 (n / 2) = n

≤ 8 (n / 8) = n

⋮

C (n)

≤ 4 (n / 4) = n

C (n / 2) C (n / 2)

C (n / 8) C (n / 8)C (n / 8) C (n / 8) C (n / 8) C (n / 8)C (n / 8) C (n / 8)

C (n / 4) C (n / 4) C (n / 4) C (n / 4)

⋮

C(n) = number of compares to
 mergesort array of length n

number of compares when merging
to form sorted array of length n

4.2 ALGORITHMS

‣ sequential search

‣ binary search

‣ insertion sort

‣mergesort

‣ system librariesR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Module java.base
Package java.util

Class Arrays

java.lang.Object
java.util.Arrays

public class Arrays
extends Object

This class contains various methods for manipulating arrays (such as sorting and searching). This class also contains a
static factory that allows arrays to be viewed as lists.

The methods in this class all throw a NullPointerException, if the specified array reference is null, except where
noted.

The documentation for the methods contained in this class includes brief descriptions of the implementations. Such
descriptions should be regarded as implementation notes, rather than parts of the specification. Implementors should
feel free to substitute other algorithms, so long as the specification itself is adhered to. (For example, the algorithm
used by sort(Object[]) does not have to be a MergeSort, but it does have to be stable.)

This class is a member of the Java Collections Framework.

Since:
1.2

Method Summary

Modifier and Type Method Description

static <T> List<T> asList(T... a) Returns a fixed-size list backed by the specified
array.

static int binarySearch(byte[] a, byte key) Searches the specified array of bytes for the
specified value using the binary search
algorithm.

static int binarySearch(byte[] a,
int fromIndex, int toIndex,
byte key)

Searches a range of the specified array of
bytes for the specified value using the binary
search algorithm.

static int binarySearch(char[] a, char key) Searches the specified array of chars for the
specified value using the binary search
algorithm.

static int binarySearch(char[] a,
int fromIndex, int toIndex,
char key)

Searches a range of the specified array of
chars for the specified value using the binary
search algorithm.

static int binarySearch(double[] a,
double key)

Searches the specified array of doubles for the
specified value using the binary search
algorithm.

static int binarySearch(double[] a,
int fromIndex, int toIndex,
double key)

Searches a range of the specified array of
doubles for the specified value using the binary
search algorithm.

static int binarySearch(float[] a,
float key)

Searches the specified array of floats for the
specified value using the binary search
algorithm.

static int binarySearch(float[] a,
int fromIndex, int toIndex,
float key)

Searches a range of the specified array of
floats for the specified value using the binary
search algorithm.

static int binarySearch(int[] a, int key) Searches the specified array of ints for the
specified value using the binary search
algorithm.

static int binarySearch(int[] a,
int fromIndex, int toIndex,
int key)

Searches a range of the specified array of ints
for the specified value using the binary search
algorithm.

static int binarySearch(long[] a,
int fromIndex, int toIndex,
long key)

Searches a range of the specified array of
longs for the specified value using the binary
search algorithm.

static int binarySearch(long[] a, long key) Searches the specified array of longs for the
specified value using the binary search
algorithm.

static int binarySearch(short[] a,
int fromIndex, int toIndex,
short key)

Searches a range of the specified array of
shorts for the specified value using the binary
search algorithm.

static int binarySearch(short[] a,
short key)

Searches the specified array of shorts for the
specified value using the binary search
algorithm.

static int binarySearch(Object[] a,
int fromIndex, int toIndex,
Object key)

Searches a range of the specified array for the
specified object using the binary search
algorithm.

static int binarySearch(Object[] a,
Object key)

Searches the specified array for the specified
object using the binary search algorithm.

static <T> int binarySearch(T[] a,
int fromIndex, int toIndex,
T key, Comparator<? super T> c)

Searches a range of the specified array for the
specified object using the binary search
algorithm.

static <T> int binarySearch(T[] a, T key,
Comparator<? super T> c)

Searches the specified array for the specified
object using the binary search algorithm.

static int compare(boolean[] a, boolean[] b) Compares two boolean arrays
lexicographically.

static int compare(boolean[] a,
int aFromIndex, int aToIndex,
boolean[] b, int bFromIndex,
int bToIndex)

Compares two boolean arrays
lexicographically over the specified ranges.

static int compare(byte[] a, byte[] b) Compares two byte arrays lexicographically.

static int compare(byte[] a, int aFromIndex,
int aToIndex, byte[] b,
int bFromIndex, int bToIndex)

Compares two byte arrays lexicographically
over the specified ranges.

static int compare(char[] a, char[] b) Compares two char arrays lexicographically.

static int compare(char[] a, int aFromIndex,
int aToIndex, char[] b,
int bFromIndex, int bToIndex)

Compares two char arrays lexicographically
over the specified ranges.

static int compare(double[] a, double[] b) Compares two double arrays lexicographically.

static int compare(double[] a,
int aFromIndex, int aToIndex,
double[] b, int bFromIndex,
int bToIndex)

Compares two double arrays lexicographically
over the specified ranges.

static int compare(float[] a, float[] b) Compares two float arrays lexicographically.

static int compare(float[] a,
int aFromIndex, int aToIndex,
float[] b, int bFromIndex,
int bToIndex)

Compares two float arrays lexicographically
over the specified ranges.

static int compare(int[] a, int[] b) Compares two int arrays lexicographically.

static int compare(int[] a, int aFromIndex,
int aToIndex, int[] b,
int bFromIndex, int bToIndex)

Compares two int arrays lexicographically
over the specified ranges.

static int compare(long[] a, int aFromIndex,
int aToIndex, long[] b,
int bFromIndex, int bToIndex)

Compares two long arrays lexicographically
over the specified ranges.

static int compare(long[] a, long[] b) Compares two long arrays lexicographically.

static int compare(short[] a,
int aFromIndex, int aToIndex,
short[] b, int bFromIndex,
int bToIndex)

Compares two short arrays lexicographically
over the specified ranges.

static int compare(short[] a, short[] b) Compares two short arrays lexicographically.

static <T extends
Comparable<? super
T>>
int

compare(T[] a, int aFromIndex,
int aToIndex, T[] b,
int bFromIndex, int bToIndex)

Compares two Object arrays lexicographically
over the specified ranges.

static <T> int compare(T[] a, int aFromIndex,
int aToIndex, T[] b,
int bFromIndex, int bToIndex,
Comparator<? super T> cmp)

Compares two Object arrays lexicographically
over the specified ranges.

static <T extends
Comparable<? super
T>>
int

compare(T[] a, T[] b) Compares two Object arrays, within
comparable elements, lexicographically.

static <T> int compare(T[] a, T[] b,
Comparator<? super T> cmp)

Compares two Object arrays lexicographically
using a specified comparator.

static int compareUnsigned(byte[] a,
byte[] b)

Compares two byte arrays lexicographically,
numerically treating elements as unsigned.

static int compareUnsigned(byte[] a,
int aFromIndex, int aToIndex,
byte[] b, int bFromIndex,
int bToIndex)

Compares two byte arrays lexicographically
over the specified ranges, numerically treating
elements as unsigned.

static int compareUnsigned(int[] a, int[] b) Compares two int arrays lexicographically,
numerically treating elements as unsigned.

static int compareUnsigned(int[] a,
int aFromIndex, int aToIndex,
int[] b, int bFromIndex,
int bToIndex)

Compares two int arrays lexicographically
over the specified ranges, numerically treating
elements as unsigned.

static int compareUnsigned(long[] a,
int aFromIndex, int aToIndex,
long[] b, int bFromIndex,
int bToIndex)

Compares two long arrays lexicographically
over the specified ranges, numerically treating
elements as unsigned.

static int compareUnsigned(long[] a,
long[] b)

Compares two long arrays lexicographically,
numerically treating elements as unsigned.

static int compareUnsigned(short[] a,
int aFromIndex, int aToIndex,
short[] b, int bFromIndex,
int bToIndex)

Compares two short arrays lexicographically
over the specified ranges, numerically treating
elements as unsigned.

static int compareUnsigned(short[] a,
short[] b)

Compares two short arrays lexicographically,
numerically treating elements as unsigned.

static boolean[] copyOf(boolean[] original,
int newLength)

Copies the specified array, truncating or
padding with false (if necessary) so the copy
has the specified length.

static byte[] copyOf(byte[] original,
int newLength)

Copies the specified array, truncating or
padding with zeros (if necessary) so the copy
has the specified length.

static char[] copyOf(char[] original,
int newLength)

Copies the specified array, truncating or
padding with null characters (if necessary) so
the copy has the specified length.

static double[] copyOf(double[] original,
int newLength)

Copies the specified array, truncating or
padding with zeros (if necessary) so the copy
has the specified length.

static float[] copyOf(float[] original,
int newLength)

Copies the specified array, truncating or
padding with zeros (if necessary) so the copy
has the specified length.

static int[] copyOf(int[] original,
int newLength)

Copies the specified array, truncating or
padding with zeros (if necessary) so the copy
has the specified length.

static long[] copyOf(long[] original,
int newLength)

Copies the specified array, truncating or
padding with zeros (if necessary) so the copy
has the specified length.

static short[] copyOf(short[] original,
int newLength)

Copies the specified array, truncating or
padding with zeros (if necessary) so the copy
has the specified length.

static <T> T[] copyOf(T[] original,
int newLength)

Copies the specified array, truncating or
padding with nulls (if necessary) so the copy
has the specified length.

static <T,U>
T[]

copyOf(U[] original,
int newLength, Class<? extends
T[]> newType)

Copies the specified array, truncating or
padding with nulls (if necessary) so the copy
has the specified length.

static boolean[] copyOfRange(boolean[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static byte[] copyOfRange(byte[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static char[] copyOfRange(char[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static double[] copyOfRange(double[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static float[] copyOfRange(float[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static int[] copyOfRange(int[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static long[] copyOfRange(long[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static short[] copyOfRange(short[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static <T> T[] copyOfRange(T[] original,
int from, int to)

Copies the specified range of the specified
array into a new array.

static <T,U>
T[]

copyOfRange(U[] original,
int from, int to, Class<? extends
T[]> newType)

Copies the specified range of the specified
array into a new array.

static boolean deepEquals(Object[] a1,
Object[] a2)

Returns true if the two specified arrays are
deeply equal to one another.

static int deepHashCode(Object[] a) Returns a hash code based on the "deep
contents" of the specified array.

static String deepToString(Object[] a) Returns a string representation of the "deep
contents" of the specified array.

static boolean equals(boolean[] a, boolean[] a2) Returns true if the two specified arrays of
booleans are equal to one another.

static boolean equals(boolean[] a,
int aFromIndex, int aToIndex,
boolean[] b, int bFromIndex,
int bToIndex)

Returns true if the two specified arrays of
booleans, over the specified ranges, are equal
to one another.

static boolean equals(byte[] a, byte[] a2) Returns true if the two specified arrays of
bytes are equal to one another.

static boolean equals(byte[] a, int aFromIndex,
int aToIndex, byte[] b,
int bFromIndex, int bToIndex)

Returns true if the two specified arrays of
bytes, over the specified ranges, are equal to
one another.

static boolean equals(char[] a, char[] a2) Returns true if the two specified arrays of
chars are equal to one another.

static boolean equals(char[] a, int aFromIndex,
int aToIndex, char[] b,
int bFromIndex, int bToIndex)

Returns true if the two specified arrays of
chars, over the specified ranges, are equal to
one another.

static boolean equals(double[] a, double[] a2) Returns true if the two specified arrays of
doubles are equal to one another.

static boolean equals(double[] a,
int aFromIndex, int aToIndex,
double[] b, int bFromIndex,
int bToIndex)

Returns true if the two specified arrays of
doubles, over the specified ranges, are equal to
one another.

static boolean equals(float[] a, float[] a2) Returns true if the two specified arrays of
floats are equal to one another.

static boolean equals(float[] a, int aFromIndex,
int aToIndex, float[] b,
int bFromIndex, int bToIndex)

Returns true if the two specified arrays of
floats, over the specified ranges, are equal to
one another.

static boolean equals(int[] a, int[] a2) Returns true if the two specified arrays of ints
are equal to one another.

static boolean equals(int[] a, int aFromIndex,
int aToIndex, int[] b,
int bFromIndex, int bToIndex)

Returns true if the two specified arrays of ints,
over the specified ranges, are equal to one
another.

static boolean equals(long[] a, int aFromIndex,
int aToIndex, long[] b,
int bFromIndex, int bToIndex)

Returns true if the two specified arrays of
longs, over the specified ranges, are equal to
one another.

static boolean equals(long[] a, long[] a2) Returns true if the two specified arrays of
longs are equal to one another.

static boolean equals(short[] a, int aFromIndex,
int aToIndex, short[] b,
int bFromIndex, int bToIndex)

Returns true if the two specified arrays of
shorts, over the specified ranges, are equal to
one another.

static boolean equals(short[] a, short[] a2) Returns true if the two specified arrays of
shorts are equal to one another.

static boolean equals(Object[] a,
int aFromIndex, int aToIndex,
Object[] b, int bFromIndex,
int bToIndex)

Returns true if the two specified arrays of
Objects, over the specified ranges, are equal to
one another.

static boolean equals(Object[] a, Object[] a2) Returns true if the two specified arrays of
Objects are equal to one another.

static <T> boolean equals(T[] a, int aFromIndex,
int aToIndex, T[] b,
int bFromIndex, int bToIndex,
Comparator<? super T> cmp)

Returns true if the two specified arrays of
Objects, over the specified ranges, are equal to
one another.

static <T> boolean equals(T[] a, T[] a2,
Comparator<? super T> cmp)

Returns true if the two specified arrays of
Objects are equal to one another.

static void fill(boolean[] a, boolean val) Assigns the specified boolean value to each
element of the specified array of booleans.

static void fill(boolean[] a, int fromIndex,
int toIndex, boolean val)

Assigns the specified boolean value to each
element of the specified range of the specified
array of booleans.

static void fill(byte[] a, byte val) Assigns the specified byte value to each
element of the specified array of bytes.

static void fill(byte[] a, int fromIndex,
int toIndex, byte val)

Assigns the specified byte value to each
element of the specified range of the specified
array of bytes.

static void fill(char[] a, char val) Assigns the specified char value to each
element of the specified array of chars.

static void fill(char[] a, int fromIndex,
int toIndex, char val)

Assigns the specified char value to each
element of the specified range of the specified
array of chars.

static void fill(double[] a, double val) Assigns the specified double value to each
element of the specified array of doubles.

static void fill(double[] a, int fromIndex,
int toIndex, double val)

Assigns the specified double value to each
element of the specified range of the specified
array of doubles.

static void fill(float[] a, float val) Assigns the specified float value to each
element of the specified array of floats.

static void fill(float[] a, int fromIndex,
int toIndex, float val)

Assigns the specified float value to each
element of the specified range of the specified
array of floats.

static void fill(int[] a, int val) Assigns the specified int value to each element
of the specified array of ints.

static void fill(int[] a, int fromIndex,
int toIndex, int val)

Assigns the specified int value to each element
of the specified range of the specified array of
ints.

static void fill(long[] a, int fromIndex,
int toIndex, long val)

Assigns the specified long value to each
element of the specified range of the specified
array of longs.

static void fill(long[] a, long val) Assigns the specified long value to each
element of the specified array of longs.

static void fill(short[] a, int fromIndex,
int toIndex, short val)

Assigns the specified short value to each
element of the specified range of the specified
array of shorts.

static void fill(short[] a, short val) Assigns the specified short value to each
element of the specified array of shorts.

static void fill(Object[] a, int fromIndex,
int toIndex, Object val)

Assigns the specified Object reference to each
element of the specified range of the specified
array of Objects.

static void fill(Object[] a, Object val) Assigns the specified Object reference to each
element of the specified array of Objects.

static int hashCode(boolean[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(byte[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(char[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(double[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(float[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(int[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(long[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(short[] a) Returns a hash code based on the contents of
the specified array.

static int hashCode(Object[] a) Returns a hash code based on the contents of
the specified array.

static int mismatch(boolean[] a,
boolean[] b)

Finds and returns the index of the first
mismatch between two boolean arrays,
otherwise return -1 if no mismatch is found.

static int mismatch(boolean[] a,
int aFromIndex, int aToIndex,
boolean[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two boolean arrays over
the specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(byte[] a, byte[] b) Finds and returns the index of the first
mismatch between two byte arrays, otherwise
return -1 if no mismatch is found.

static int mismatch(byte[] a,
int aFromIndex, int aToIndex,
byte[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two byte arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(char[] a, char[] b) Finds and returns the index of the first
mismatch between two char arrays, otherwise
return -1 if no mismatch is found.

static int mismatch(char[] a,
int aFromIndex, int aToIndex,
char[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two char arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(double[] a, double[] b) Finds and returns the index of the first
mismatch between two double arrays,
otherwise return -1 if no mismatch is found.

static int mismatch(double[] a,
int aFromIndex, int aToIndex,
double[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two double arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(float[] a, float[] b) Finds and returns the index of the first
mismatch between two float arrays,
otherwise return -1 if no mismatch is found.

static int mismatch(float[] a,
int aFromIndex, int aToIndex,
float[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two float arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(int[] a, int[] b) Finds and returns the index of the first
mismatch between two int arrays, otherwise
return -1 if no mismatch is found.

static int mismatch(int[] a, int aFromIndex,
int aToIndex, int[] b,
int bFromIndex, int bToIndex)

Finds and returns the relative index of the first
mismatch between two int arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(long[] a,
int aFromIndex, int aToIndex,
long[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two long arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(long[] a, long[] b) Finds and returns the index of the first
mismatch between two long arrays, otherwise
return -1 if no mismatch is found.

static int mismatch(short[] a,
int aFromIndex, int aToIndex,
short[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two short arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(short[] a, short[] b) Finds and returns the index of the first
mismatch between two short arrays,
otherwise return -1 if no mismatch is found.

static int mismatch(Object[] a,
int aFromIndex, int aToIndex,
Object[] b, int bFromIndex,
int bToIndex)

Finds and returns the relative index of the first
mismatch between two Object arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static int mismatch(Object[] a, Object[] b) Finds and returns the index of the first
mismatch between two Object arrays,
otherwise return -1 if no mismatch is found.

static <T> int mismatch(T[] a, int aFromIndex,
int aToIndex, T[] b,
int bFromIndex, int bToIndex,
Comparator<? super T> cmp)

Finds and returns the relative index of the first
mismatch between two Object arrays over the
specified ranges, otherwise return -1 if no
mismatch is found.

static <T> int mismatch(T[] a, T[] b,
Comparator<? super T> cmp)

Finds and returns the index of the first
mismatch between two Object arrays,
otherwise return -1 if no mismatch is found.

static void parallelPrefix(double[] array,
int fromIndex, int toIndex,
DoubleBinaryOperator op)

Performs parallelPrefix(double[],
DoubleBinaryOperator) for the given
subrange of the array.

static void parallelPrefix(double[] array,
DoubleBinaryOperator op)

Cumulates, in parallel, each element of the
given array in place, using the supplied
function.

static void parallelPrefix(int[] array,
int fromIndex, int toIndex,
IntBinaryOperator op)

Performs parallelPrefix(int[],
IntBinaryOperator) for the given subrange of
the array.

static void parallelPrefix(int[] array,
IntBinaryOperator op)

Cumulates, in parallel, each element of the
given array in place, using the supplied
function.

static void parallelPrefix(long[] array,
int fromIndex, int toIndex,
LongBinaryOperator op)

Performs parallelPrefix(long[],
LongBinaryOperator) for the given subrange
of the array.

static void parallelPrefix(long[] array,
LongBinaryOperator op)

Cumulates, in parallel, each element of the
given array in place, using the supplied
function.

static <T> void parallelPrefix(T[] array,
int fromIndex, int toIndex,
BinaryOperator<T> op)

Performs parallelPrefix(Object[],
BinaryOperator) for the given subrange of the
array.

static <T> void parallelPrefix(T[] array,
BinaryOperator<T> op)

Cumulates, in parallel, each element of the
given array in place, using the supplied
function.

static void parallelSetAll(double[] array,
IntToDoubleFunction generator)

Set all elements of the specified array, in
parallel, using the provided generator function
to compute each element.

static void parallelSetAll(int[] array,
IntUnaryOperator generator)

Set all elements of the specified array, in
parallel, using the provided generator function
to compute each element.

static void parallelSetAll(long[] array,
IntToLongFunction generator)

Set all elements of the specified array, in
parallel, using the provided generator function
to compute each element.

static <T> void parallelSetAll(T[] array,
IntFunction<? extends
T> generator)

Set all elements of the specified array, in
parallel, using the provided generator function
to compute each element.

static void parallelSort(byte[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(byte[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static void parallelSort(char[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(char[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static void parallelSort(double[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(double[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static void parallelSort(float[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(float[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static void parallelSort(int[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(int[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static void parallelSort(long[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(long[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static void parallelSort(short[] a) Sorts the specified array into ascending
numerical order.

static void parallelSort(short[] a,
int fromIndex, int toIndex)

Sorts the specified range of the array into
ascending numerical order.

static <T extends
Comparable<? super
T>>
void

parallelSort(T[] a) Sorts the specified array of objects into
ascending order, according to the natural
ordering of its elements.

static <T extends
Comparable<? super
T>>
void

parallelSort(T[] a,
int fromIndex, int toIndex)

Sorts the specified range of the specified array
of objects into ascending order, according to
the natural ordering of its elements.

static <T> void parallelSort(T[] a,
int fromIndex, int toIndex,
Comparator<? super T> cmp)

Sorts the specified range of the specified array
of objects according to the order induced by
the specified comparator.

static <T> void parallelSort(T[] a, Comparator<?
super T> cmp)

Sorts the specified array of objects according
to the order induced by the specified
comparator.

static void setAll(double[] array,
IntToDoubleFunction generator)

Set all elements of the specified array, using
the provided generator function to compute
each element.

static void setAll(int[] array,
IntUnaryOperator generator)

Set all elements of the specified array, using
the provided generator function to compute
each element.

static void setAll(long[] array,
IntToLongFunction generator)

Set all elements of the specified array, using
the provided generator function to compute
each element.

static <T> void setAll(T[] array, IntFunction<?
extends T> generator)

Set all elements of the specified array, using
the provided generator function to compute
each element.

static void sort(byte[] a) Sorts the specified array into ascending
numerical order.

static void sort(byte[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(char[] a) Sorts the specified array into ascending
numerical order.

static void sort(char[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(double[] a) Sorts the specified array into ascending
numerical order.

static void sort(double[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(float[] a) Sorts the specified array into ascending
numerical order.

static void sort(float[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(int[] a) Sorts the specified array into ascending
numerical order.

static void sort(int[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(long[] a) Sorts the specified array into ascending
numerical order.

static void sort(long[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(short[] a) Sorts the specified array into ascending
numerical order.

static void sort(short[] a, int fromIndex,
int toIndex)

Sorts the specified range of the array into
ascending order.

static void sort(Object[] a) Sorts the specified array of objects into
ascending order, according to the natural
ordering of its elements.

static void sort(Object[] a, int fromIndex,
int toIndex)

Sorts the specified range of the specified array
of objects into ascending order, according to
the natural ordering of its elements.

static <T> void sort(T[] a, int fromIndex,
int toIndex, Comparator<? super
T> c)

Sorts the specified range of the specified array
of objects according to the order induced by
the specified comparator.

static <T> void sort(T[] a, Comparator<? super
T> c)

Sorts the specified array of objects according
to the order induced by the specified
comparator.

static
Spliterator.OfDouble

spliterator(double[] array) Returns a Spliterator.OfDouble covering all
of the specified array.

static
Spliterator.OfDouble

spliterator(double[] array,
int startInclusive,
int endExclusive)

Returns a Spliterator.OfDouble covering the
specified range of the specified array.

static
Spliterator.OfInt

spliterator(int[] array) Returns a Spliterator.OfInt covering all of
the specified array.

static
Spliterator.OfInt

spliterator(int[] array,
int startInclusive,
int endExclusive)

Returns a Spliterator.OfInt covering the
specified range of the specified array.

static
Spliterator.OfLong

spliterator(long[] array) Returns a Spliterator.OfLong covering all of
the specified array.

static
Spliterator.OfLong

spliterator(long[] array,
int startInclusive,
int endExclusive)

Returns a Spliterator.OfLong covering the
specified range of the specified array.

static
<T> Spliterator<T>

spliterator(T[] array) Returns a Spliterator covering all of the
specified array.

static
<T> Spliterator<T>

spliterator(T[] array,
int startInclusive,
int endExclusive)

Returns a Spliterator covering the specified
range of the specified array.

static DoubleStream stream(double[] array) Returns a sequential DoubleStream with the
specified array as its source.

static DoubleStream stream(double[] array,
int startInclusive,
int endExclusive)

Returns a sequential DoubleStream with the
specified range of the specified array as its
source.

static IntStream stream(int[] array) Returns a sequential IntStream with the
specified array as its source.

static IntStream stream(int[] array,
int startInclusive,
int endExclusive)

Returns a sequential IntStream with the
specified range of the specified array as its
source.

static LongStream stream(long[] array) Returns a sequential LongStream with the
specified array as its source.

static LongStream stream(long[] array,
int startInclusive,
int endExclusive)

Returns a sequential LongStream with the
specified range of the specified array as its
source.

static <T> Stream<T> stream(T[] array) Returns a sequential Stream with the specified
array as its source.

static <T> Stream<T> stream(T[] array,
int startInclusive,
int endExclusive)

Returns a sequential Stream with the specified
range of the specified array as its source.

static String toString(boolean[] a) Returns a string representation of the contents
of the specified array.

static String toString(byte[] a) Returns a string representation of the contents
of the specified array.

static String toString(char[] a) Returns a string representation of the contents
of the specified array.

static String toString(double[] a) Returns a string representation of the contents
of the specified array.

All Methods Static Methods Concrete Methods

OVERVIEW MODULE PACKAGE CLASS USE TREE DEPRECATED INDEX HELP Java SE 11 & JDK 11

ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

SEARCH: Search

Arrays Javadoc

java.util.Arrays contains static methods for manipulating arrays.

107

sorting, searching, comparing, …

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.html

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.html

System sort and binary search

Arrays.sort() and Arrays.binarySearch() each refer to several overloaded methods.

・For primitive types.

・For reference types.

・For subarrays.

108

import java.util.Arrays;

public class TestSort {
 public static void main(String[] args) {
 Arrays.sort(args);
 StdOut.println(Arrays.toString(args));
 }
}

must be Comparable
(such as String, stay tuned)

to access methods defined
in java.util.Arrays

useful function to print elements in an array
(separated by commas, enclosed in square braces)

~/cos126/algorithms> java-introcs TestSort S O R T M E
[E, M, O, R, S, T]

Bar charts

BarChart is a data type (with simple API) to draw bar charts.

109

// create the bar chart
String title = "The 10 most populous cities";
String xLabel = "Population (thousands)";
String source = "Source: United Nations";
BarChart chart = new BarChart(title, xLabel, source);

// add the bars and caption to the bar chart
chart.add("Beijing", 22674, "East Asia");
chart.add("Cairo", 19850, "Middle East");
chart.add("Delhi", 27890, "South Asia");
chart.add("Dhaka", 19633, "South Asia");
chart.add("Mexico City", 21520, "Latin America");
chart.add("Mumbai", 22120, "South Asia");
chart.add("Osaka", 20409, "East Asia");
chart.add("Shanghai", 25779, "East Asia");
chart.add("São Paulo", 21698, "Latin America");
chart.add("Tokyo", 38194, "East Asia");
chart.setCaption("2018");

// draw the bar chart
chart.draw();

Sort the bars in descending order by value (e.g., population).

Color the bars by category (e.g., region).

Challenge.	 Maintain auxiliary info when sorting.

Solution.	 Define helper Bar data type.

bars appear in order
added to bar chart

bars appear in descending
order by population

Sorted bar chart

110

Latin America

name and region

To create a user-defined data type for use with Arrays.sort():

・Declare the data type to be Comparable.

・Include a compareTo() method that compares two objects.

public class Bar {
 private final String name;
 private final int value;
 private final String category;

 public Bar(String name, int value, String category) {
 this.name = name;
 this.value = value;
 this.category = category;
 }

 public int compareTo(Bar that) {
 if (this.value < that.value) return -1;
 if (this.value > that.value) return +1;
 return 0;
 }
 ...
}

Bar data type

111

return a negative integer (smaller),
positive integer (larger), or zero (equal)

Bar[] bars = new Bar[10];
...
Arrays.sort(bars);

sort bars in ascending order by value

implements Comparable<Bar>

Bar chart race

Animated bar chart. Draw sorted bar chart (largest k = 10) for each year.

112

https://www.youtube.com/watch?v=pMs5xapBewM

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Algorithm Icon Adobe Stock education license

Gospel of Algorithms Jamis Buck

Pita Bread Algorithm Rishal Hurbans

Algorithms T-shirt Hapo Team

Binary Search Instructions IDEA CC BY-NC-SA 4.0

Nuclear Power Plant Adobe Stock education license

Sorting Hat Hannah Hill CC BY-NC 4.0

Playing Cards Google Code public domain

Jon von Neumann IAS / Alan Richards

java.util.Arrays API Oracle

Most Populous Cities John Burn-Murdoch

https://stock.adobe.com/images/algorithm-concept-2-colored-icon-simple-blue-element-illustration-algorithm-concept-symbol-design-from-artificial-intelligence-set-can-be-used-for-web-and-mobile-ui-ux/215231944
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://www.jamisbuck.org/presentations/rubyconf2011/index.html
https://rishalhurbans.medium.com/algorithms-are-like-recipes-c3cf4f206209
https://www.redbubble.com/i/t-shirt/Algorithm-Definition-Funny-Programming-Definition-by-ProgrammingMeme/65438975.LKTGZ
https://idea-instructions.com/binary-search/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stock.adobe.com/images/alternative-energy-sources-vector-illustration-flat-style-energy-generation-source-types-coal-biomass-gas-waste-nuclear-wind-hydro-solar-geothermal-stations-renewable-energy-icon-set/703928270
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://freepngimg.com/png/107809-hat-sorting-potter-harry-free-png-hq
https://creativecommons.org/licenses/by-sa/4.0/
https://code.google.com/archive/p/vector-playing-cards/downloads
https://creativecommons.org/share-your-work/public-domain/
https://www.chronicle.com/article/early-computings-deal-with-the-devil
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.html
https://www.youtube.com/watch?v=pMs5xapBewM

