C O1nN p uter S C 1 cCnce ROBERT SEDGEWICK | KEVIN WAYNE

4.2 ALGORITHMS

» sequential search

> binary search

COMPUTER > insertion sort
SCIENCE
= » mergesort
https://introcs.cs.princeton.edu \ I (
7

https://introcs.cs.princeton.edu

Algorithms %%

Intuition. An algorithm is like a recipe. < but unambiguous and mechanically executable

Pita bread-altgerithm recipe

ﬂ 20ml
/ olive el

7g yeast - 5009 flour

Knead
the dough.

~ 1/2 teaspoon salt 3

1 water 2 -

[

| 6
I

Cut the dough inte 10 pieces.

high fer
7# minvtes.

Gover the dough (& j;; \/"“l m; Bake inovenon \\ |\ ‘-’:l
for 20 minutes. _// L

Roll the deugh inte circles. |
l

Algorithms %ﬁ}

Algorithm. Step-by-step procedure for solving a problem.

formalized by

« Takes input; produces output. < Turing machines

 Unambiguous and mechanically executable (e.qg., in Java).

category

(stay tuned)

famous algorithms

historic

sorting and searching

graphs

linear algebra

scientific computing

machine learning

Euclid’s gcd algorithm, gradient descent, Newton's method

binary search, insertion sort, mergesort < this lecture

DFS, BFS, Dijkstra, Kruskal, Ford—Fulkerson

Gaussian elimination, simplex method, QR method, PageRank

Smith—Waterman, Metropolis—Hastings, k-means, FFT

A*-search, neural network, transformer, AlphaFold

4.2 ALGORITHMS

» sequential search

~binary search

COMPUTER » Insertion sort

S CIENCE
»-mergesort

L An Itedscpl dyAppocchl

. ROBERT, SEDGEWICK ,
~ KEVIN WAYNE"

https://introcs.cs:princetoniedu

https://introcs.cs.princeton.edu

Sequential search

Problem. Given an array of n elements and a search key, find index of search key in array.

Sequential search. Check each element in array until match is found.

search 25 14 43 96 53 25 64 51 84 95

public static int sequentialSearch(String[] a, String key) {

int n = a.length;
for (int 1 = 0; 1 < n; 1++) {

it (al[i1].equals(key)) return 1; for now, we’ll assume
) String keys

return -1; - return -1 to indicate
1 key is not in array

Algorithms: quiz 1

In the worst case, how many equality tests (or array accesses) does sequential search

make to search for a key in an array of length n?

A. O(1)
B. ©®O(ogn)
C. Om

D. O

Sequential search

Problem. Given an array of n elements and a search key, find index of search key in array.

Sequential search (linear search). Check each element in array until match is found.

search 25 14 43 96 53 25 64 51 84 95

Cost model. Equality tests (or array accesses).

Performance. Sequential search solves the problem using =< n equality tests.

4.2 ALGORITHMS

» sequential search

> binary search

COMPUTER » Insertion sort

S CIENCE
»-mergesort

L An Itedscpl dyAppocchl

. ROBERT, SEDGEWICK ,
~ KEVIN WAYNE"

https://introcs.cs:princetoniedu

https://introcs.cs.princeton.edu

Binary search

Problem. Given a sorted array of n elements and a search key, find index of search key in array.

Binary search. Compare search key with middle element.
« Too small, go left.
* Too big, go right.
« Equal, found.

sorted array

10 13 14 25 33 43 5] 53 064 72 84 93 95 96 97

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

T T

lo hi

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

sorted array

10 13 14 25 33 43 5] 53 064 72 84 93 95 96 97

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

T T

lo hi

10

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

successful search for 33

10 13 14 25 33 43 5] 53 064 72 84 93 95 96 97

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

T T T

lo mid hi

11

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

successful search for 33

10 13 14 25 33 43 51

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

T T T

lo mid hi

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.
Binary search. Compare search key with middle entry.
« Too small, go left.

* Too big, go right.
« Equal, found.

successful search for 33

33 43 51

lo mid hi

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

mid
successful search for 33 l
33
0] 2 3 4 5 6 7 8 9 10 11 12 13 14
lo hi

return 4

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

unsuccessful search for 90

10 13 14 25 33 43 5] 53 064 72 84 93 95 96 97

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

T T T

lo mid hi

15

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

unsuccessful search for 90

64 /2 84 93 95 96 97

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14

lo mid hi

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

unsuccessful search for 90

64 72 84

0 1 2 3 4 5 6 / 8 9 10 11

lo mid hi

12

13

14

17

Binary search demo

Problem. Given a sorted array and a search key, find index of the search key in the array.

Binary search. Compare search key with middle entry.
« Too small, go left.
* Too big, go right.
« Equal, found.

unsuccessful search for 90

return -1

mid

34

10 11 12

11

lo hi

13

14

18

Binary search: Java implementation

Invariant. If key appears in array a[], then a[lo] < key < af[hi].

public static int binarySearch(String[] a, String key) {

int lo = 0, hi = a.length - 1;

while (lo <= hi1) { essentially equivalent to
int mid = lo + (hi - lo) / 2; = mid = (lo + h1) / 2
int compare - key.compareTo(a[mid]): (but avoids arithmetic overflow)
1f (compare < 0) hi1 = mid - 1; $\\\\\\\\\\\\\\\\\\\\\
else 1f (comp?re > 0) lo = md + 1; return zero (if equal),
else return mid; negative integer (if less),
} positive integer (if greater)
return -1;

19

Algorithms: quiz 2

In the worst case, how many compares (or array accesses) does binary search make

to search for a key in a sorted array of length n?

A. O(1)
B. ©®O(ogn)
C. Om

D. O

20

Binary search: analysis

Problem. Given a sorted array of n elements and a search key, find index of search key in array.

Proposition. Binary search solves problem using <1 +log, n compares.

Pf.
« Each iteration of while loop:

- calls compareTo() once

] %
- decreases the length of subarray under |~ c@/appenatmost 1+ log nimes. Why:
n =+ n/2 + n/4d > n/8 = - -2 =1

consideration by at least a factor of 2

N S
—

1 +log, n

21

Sequential search vs. binary search: empirical analysis

Running time and energy estimates (approximate):
* CPU core executes 10° compares/second.

* CPU core consumes 18 watts power.

Resources required. [on array of length n = 10"]

queries/hour CPU cores power queries/hour CPU cores power
thousand 2.78 50 watts million — —
million 2.18 thousand 50 kilowatts billion 0.083 1.5 watts
billion 2.718 million 50 megawatts trillion 83 1.5 kilowatts
_ about 33M times more efficient
' binary search ®(log n
sequential search O(n) y (logn) < (10° vs. log, 10°)
| | 500K ChatGPT @
Bottom line. Great algorithms can replace server farms. - queries per hour

"
(= 1 gigawatt) w

4.2 ALGORITHMS

» sequential search

~binary search

COMPUTER » Insertion sort

S CIENCE
»-mergesort

L An Itedscpl dyAppocchl

. ROBERT, SEDGEWICK ,
~ KEVIN WAYNE"

https://introcs.cs:princetoniedu

https://introcs.cs.princeton.edu

Sorting problem

Problem. Given an array of n elements, rearrange in ascending order by key.

st | st | Houss | Ve

Longbottom Neville Gryffindor 1998
Weasley Ron Gryffindor 1998
Abbott Hannah Hufflepuff 1998
element > Potter Harry Gryffindor 1998
Chang Cho Ravenclaw 1997
Granger Hermione Gryffindor 1998
key > Malfoy Draco Slytherin 1998 sorting hat
Diggory Cedric Hufflepuff 1996
Weasley Ginny Gryffindor 1999

Parkinson Pansy Slytherin 1998

Sorting problem

Problem. Given an array of n elements, rearrange in ascending order by key.

st | st | Houss | Ve

Abbott Hannah Hufflepuff 1998

Chang Cho Ravenclaw 1997

Granger Hermione Gryffindor 1998

Diggory Cedric Hufflepuff 1996

Longbottom Neville Gryffindor 1998

key > Malfoy Draco Slytherin 1998
Parkinson Pansy Slytherin 1998 sorting hat

element > Potter Harry Gryffindor 1998

Weasley Ron Gryffindor 1998

Weasley Ginny Gryffindor 1999

|

sorted by key

Sorting applications

International Departures

Flight No

CX7183
QF3474
BA372
AY6554
KL3160
BA8903
BA710
QF337
MA4866
CX7221

Destination

Berlin

London

Paris

New York
San Francisco
Manchester
Los Angeles
Hong Kong
Barcelona
Copenhagen

chronological order

Gate

A-1
A-12
B-10
C-33
F-15
B-12
C-12
F-10
F-12
G-32

Remarks

Boarding
Boarding
Boarding

Gate lounge open
Check-in open
Check-in open
Check-in at kiosks

Check-in at kiosks

N

<&

suit and rank order

Video name
"Baby Shark Dance"[3!
"Despacito"l®!]
"Johny Johny Yes Papa"l!?]
"Shape of You"!13!

"See You Again"l1°]

Views (billions) ~
10.15
7.73
6.15
5.61
5.41

numerical order (descending)

Katie Abeles
Aaron Ackerman
Kelly Altick
Bryan Alvarez
David Amer

Greg Apodaca

Jane Appleseed

John Baily

Kamaldeep Bal

alphabetical order

LAbefore LB, 2327 before 2328 Sjbefore 354/
- .
LA Lt |8/ | e { LB LE LB LE LB | LB
2301 2327 | 2327 | 232 2328 | 2328/ | 2328) |2328 2395 | 2395
M7 M3 1‘559?6 Ba7 | <34 | c55 | €554 |.C63 €65 | .C65 .
1982 | | 1992 1987 | 1991
| | | \ | 3 /

N
Bbefore .C .§4 before .55

)

Library of Congress order

954 before 63

N | E
1987 before 1991

26

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

- Repeatedly exchange x with each larger element to its immediate left.

initial array

27

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

initial array

28

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

29

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

in ascending order hot yet seen

30

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

31

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

in ascending order hot yet seen

32

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

33

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

34

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

35

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

in ascending order hot yet seen

36

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

37

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

38

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

39

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

40

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

in ascending order hot yet seen

41

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

42

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

—

not yet seen

43

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

\/

in ascending order hot yet seen

44

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

'

not yet seen

45

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

'

not yet seen

46

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

'

not yet seen

47

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

'

not yet seen

48

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

'

not yet seen

49

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

'

in ascending order hot yet seen

50

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

51

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

52

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

53

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

54

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

55

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

56

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

57

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

in ascending order hot yet seen

58

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

not yet seen

59

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

\ J
Y

not yet seen

60

Insertion sort demo

Algorithm. For each indexi=0ton-1:

 Let x be the element at index i.

- Repeatedly exchange x with each larger element to its immediate left.

in ascending order

not yet seen

61

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

62

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

63

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

64

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

65

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

66

Insertion sort demo

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its immediate left.

sorted array

67

Insertion sort

Algorithm. For each indexi=0ton-1:
* Let x be the element at index i.

« Repeatedly exchange x with each larger element to its left.

lnvariants.

before iteration i

sorted i untouched

after iteration i

sorted : untouched

Insertion sort: Java implementation

public class Insertion {

public static void sort(String[] a) {
int n = a.length;
for (int 1 =0; 1 < n; 1++)
for (int j =1; 3 >0; J--)
if (less(aljl, alj-11))
exchCa, 3, J-1);
else break; «—— breaks out of

} innermost loop

private static boolean less(String v, String w) { return zero (if equal),
return v.compareTo(w) < 0; < negative integer (if less),

} positive integer (if greater)

private static void exch(String[] a, int i, int j) {
String temp = alil;
alil = aljl;
aljl = temp;

Algorithms: quiz 3

How many compares does insertion sort make to sort an array of = distinct keys in reverse order?

A. O(1)
B. O(logn)
C. Om) |

D. O

70

Insertion sort: analysis

Sorting cost model. Number of compares (or array accesses).

Proposition. Insertion sort never makes more than ~ % n? compares to sort an array of length n.

Pf.
« The worst case is a reverse-sorted array of n distinct keys.
* |n iteration i, insertion sort makes i compares.

« Total number of compares = 0+1+2+...+(®-1) = Ybn(n-1).

/71

4.2 ALGORITHMS

» sequential search

~binary search

COMPUTER » Insertion sort

S CIENCE
» mergesort

L An Itedscpl dyAppocchl

. ROBERT, SEDGEWICK ,
~ KEVIN WAYNE"

https://introcs.cs:princetoniedu

https://introcs.cs.princeton.edu

Mergesort overview

Basic plan.

* Divide array into two halves.

« Recursively sort left half.
« Recursively sort right half.

* Merge two sorted halves.

First Draft

of a
Report on the

EDVAC

John von Neumann

input M ERGESORITENXAMEPLE

sort left half E E G M O R R S

sort right half

A EELMTPT X

merge results A £E E E E G L MMOP R R S T X

AT

L]
L]
ak
a.
]
S
A
]

/73

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

1o mid mid+1

sorted sorted

/74

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

1o mid mid+1

sorted sorted

/5

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

1o mid mid+1

copy to auxiliary array

aux|[] |

h1

76

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

aux] E E G M R A C F R

7’7

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E E G M

/8

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E E G M R A C F R

79

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E E G M R |

80

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E E G M R C F R

81

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E G M R F R

1]

82

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

al] A
Kk
compare minimum in each subarray
aux[] E E G M R | F R

83

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] G M R F R

1]

84

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] E G M R | F R

85

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] G M R |

86

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] G M R | F R

87

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

L]

88

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] G M R | R

89

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux|]

90

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux/|] M R | R

91

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux|]

92

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

compare minimum in each subarray

aux[] R | R

93

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

one subarray exhausted, take from other

aux|]

94

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

one subarray exhausted, take from other

aux[] R

95

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

one subarray exhausted, take from other

aux|]

96

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

one subarray exhausted, take from other

aux|]

97

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

both subarrays exhausted, done

aux|[]

98

Merging demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

1o

sorted

h1

99

Merging: Java implementation

private static void merge(String[] a, String[] aux, int lo,

for (

int k = lo; k <= h1; k++) copy

aux|[k] = alk];

int 1
for (
if
o
o

a

= lo, J = mid+1;
int kK = lo; k <= h1; k++) {

(1 > mid) alk] =
se 1f (3 > hi1) alk] =
se 1T (less(aux[3j], aux[1])) alk] =
se alk] =

lo mid

aux[] M R

duUX
duX
duX
auX

merge

J++];

(J++];

(14++] ;

(1++] ;

int mid, int hi1) {

increments variable after
using it to index array

h1

100

Mergesort: Java implementation

public class Merge {
private static void merge(...) {

private static void sort(String[] a, String[] aux, int lo, int hi) {
1f (hi <= lo) return;
int mid = lo + (h1 - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+1l, hi);
merge(a, aux, lo, mid, hi);

public static void sort(String[] a) {
String!] aux = new Stringla.length]; <
sort(a, aux, 0, a.length - 1);

create (and reuse)
auxiliary array

1o mid h1

10 11 12 13 14 15 16 17 18 19 i

Mergesort: trace

AR

merge(a, aux, 0, O, 1)

merge(a, aux, 2, 2, 3)
merge(a, aux, 0, 1, 3)

merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 4, 5, 7)
merge(a, aux, 0, 3, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, &8, 9, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
merge(a, aux, 12, 13, 15)
merge(a, aux, &8, 11, 15)
merge(a, aux, 0, 7, 15)

all

1

12 13 14 15

=<
=< M|
)
O
i
wniu
O
A |~

~ I O
Wn

A E E E E G L M

> | =

M P L

— - =X m

E

X X T

result after recursive call

102

Insertion sort vs. mergesort: empirical analysis

Running time estimates (approximate):
* Laptop executes 10° compares/second.

* Supercomputer executes 10> compares/second.

n laptop super n laptop super

thousand instant instant thousand instant instant

million 2.8 hours 1 second million 1 second instant

billion 317 years 1 week billion 18 minutes instant
insertion sort mergesort

Bottom line. Great algorithms are better than supercomputers.

103

Algorithms: quiz 4 st

In the worst case, how many compares are needed to merge two sorted subarrays of length n /2
to produce a sorted array of length n ?

merging two sorted arrays, each of length n/2
A. n/?2 2 y gth n/
B. n-1 dp dp dy 43 bp by by b
C. O(nlogn)

D. O

104

Mergesort analysis

Proposition. Mergesort makes < nlog, n compares to sort any array of length n.

Pf by picture. [assuming n is a power of 2]

number of compares when merging

C(n) = number of compares to to form sorted array of length n

/ mergesort array of length n /

C(n) <n

=n
/ \
C(n/?2) Cn/?2) <2®/2) =n
N N
Cn/4) Cn/4) C(n/4) C(n/4) <4n/4) =n
AT ATEAYNA
=n

C(n/8) Cn/8) Cn/8) C(n/8) Cn/8) C(n/d) C(n/3d) C(n/3) <8(n/8)

CC(n)s nlogzn)

105

4.2 ALGORITHMS

» sequential search

~binary|search

COMPUTER » Insertion sort

S CIENCE
»-mergesort

L An Itedscpl dyAppocchl

. ROBERT SEDGEWICK

| KEVIN WAYNE" > SYSfem Iibraries

https://introcs.cs:princetoniedu

https://introcs.cs.princeton.edu

Arrays Javadoc

java.util.Arrays contains static methods for manipulating arrays. - sorting, searching, comparing, ...

Module java.base
Package java.util

Class Arrays

java.lang.Object
java.util.Arrays

public class Arrays
extends Object

This class contains various methods for manipulating arrays (such as sorting and searching). This class also contains a
static factory that allows arrays to be viewed as lists.

The methods in this class all throw a NullPointerException, if the specified array reference is null, except where
noted.

The documentation for the methods contained in this class includes brief descriptions of the implementations. Such
descriptions should be regarded as implementation notes, rather than parts of the specification. Implementors should
feel free to substitute other algorithms, so long as the specification itself is adhered to. (For example, the algorithm
used by sort(Object[]) does not have to be a MergeSort, but it does have to be stable.)

107

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.html

System sort and binary search

Arrays.sort() and Arrays.binarySearch() each refer to several overloaded methods.

* For primitive types.

must be Comparable

For reference types. « (such as String, stay tuned)

* For subarrays.

to access methods defined
in java.util.Arrays

-

import java.util.Arrays;

public class TestSort {
public static void main(String[] args) {
Arrays.sort(args);

StdOut.printin(Arrays.toString(args)); ~/cosl26/algorithms> java-introcs TestSort S ORTME
} ! [E, M, 0, R, S, T]

useful function to print elements in an array
(separated by commas, enclosed in square braces)

108

Bar charts

BarChart is a data type (with simple API) to draw bar charts.

The 10 most populous cities

String title = "The 10 most populous cities”;

String xLabel = "Population (thousands)";

String source = "Source: United Nations";

BarChart chart = new BarChart(title, xLabel, source);

Population (thousands)

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

Beijing 22,674

Cairo 19,850

chart.add("Bei1jing", 22674, "East Asia"); i
chart.add("Cairo", 19850, "Middle East"); Dhaka 19,633
chart.add("Delhi", 27890, "South Asia"); I .
chart.add("Dhaka", 19633, "South Asia");

chart.add("Mexico City", 21520, "Latin America"); Mumbai 22,120
chart.add("Mumbai", 22120, "South Asia"); P o0
chart.add("Osaka", 20409, "East Asia');

chart.add("Shanghai", 25779, "East Asia"); Shanghai 25,779
chart.add("Sdo Paulo", 21698, "Latin America"); T 2i69s
chart.add("Tokyo", 38194, "East Asia');

chart.setCaption("2018") ; Tokyo 38,194

chart.

draw() :

109

Sorted bar chart

Sort the bars in descending order by value (e.g., population).

Color the bars by category (e.g., region).

name and region

|

Challenge. Maintain auxiliary info when sorting.

Solution.

Define helper Bar data type.

Latin America

Population (thousands)

0

5,000

10,000

|

The 10 most populous cities

15,000 20,000 25,000 30,000

Delhi 27,890
Shanghai 25,779
Beijing 22,674
Mumbai 22,120
Sao Paulo 21,698
Mexico City 21,520
Osaka 20,409
Cairo 19,850

Dhaka 19,633

bars appear in descending
order by population

35,000

Tokyo 38,194

110

Bar data type

To create a user-defined data type for use with Arrays.sort():
« Declare the data type to be Comparable.

* Include a compareTo() method that compares two objects.

public class Bar implements Comparable<Bar> { Bar[] bars = new Bar|[10];
private final String name;
private final int value; Arrays.sort(bars);
private final String category;

sort bars in ascending order by value
public Bar(String name, int value, String category) {

this.name = name:
this.value = value;
this.category = category;

public 1nt compareTo(Bar that) {
1t (this.value < that.value) return -1:

if (this.value > that.value) return +1; < return a negative integer (smaller),

positive integer (larger), or zero (equal)

return O;

111

Bar chart race

Animated bar chart. Draw sorted bar chart (largest £ = 10) for each year.

The most populous cities in the world from 1500 to 2018

Population (thousands)

0 100 200 300 400 500 600
= 672
500
Cairo
eyt 400
N 250
Tabriz
Iran 250
il 1 5 0 0
Year:
Istanbul 200 e a r .
Turkey i
‘ Bar colours represent regions

_—

Paris s “EC 4
France 185 ‘F et ”

AT A -
150 o5

147 Graphic: @jburnmurdoch
Sources: Reba, M. L., F. Reitsma, and K. C. Seto. 2018; Demographia

https://www.youtube.com/watch?v=pMs5xapBewM

112

Credits

media source license
Algorithm Icon Adobe Stock education license
Gospel of Algorithms Jamis Buck
Pita Bread Algorithm Rishal Hurbans
Algorithms T-shirt Hapo Team
Binary Search Instructions IDEA CCBY-NC-SA 4.0
Nuclear Power Plant Adobe Stock education license
Sorting Hat Hannah Hill CCBY-NC4.0
Playing Cards Google Code public domain
Jon von Neumann IAS / Alan Richards
java.util Arrays API Oracle

Most Populous Cities

John Burn-Murdoch

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/algorithm-concept-2-colored-icon-simple-blue-element-illustration-algorithm-concept-symbol-design-from-artificial-intelligence-set-can-be-used-for-web-and-mobile-ui-ux/215231944
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://www.jamisbuck.org/presentations/rubyconf2011/index.html
https://rishalhurbans.medium.com/algorithms-are-like-recipes-c3cf4f206209
https://www.redbubble.com/i/t-shirt/Algorithm-Definition-Funny-Programming-Definition-by-ProgrammingMeme/65438975.LKTGZ
https://idea-instructions.com/binary-search/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://stock.adobe.com/images/alternative-energy-sources-vector-illustration-flat-style-energy-generation-source-types-coal-biomass-gas-waste-nuclear-wind-hydro-solar-geothermal-stations-renewable-energy-icon-set/703928270
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://freepngimg.com/png/107809-hat-sorting-potter-harry-free-png-hq
https://creativecommons.org/licenses/by-sa/4.0/
https://code.google.com/archive/p/vector-playing-cards/downloads
https://creativecommons.org/share-your-work/public-domain/
https://www.chronicle.com/article/early-computings-deal-with-the-devil
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Arrays.html
https://www.youtube.com/watch?v=pMs5xapBewM

