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An algorithmic success story

Discrete Fourier transform.
* Multiply two univariate polynomials of degree n.
« Applications: audio processing, MRI, data compression, communications, PDEs, ...
* Grade-school algorithm: O(n?) steps.

* Cooley-Tukey FFT algorithm: ®(n log n) steps, enables new technology.
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The challenge (modern version)

Q1. Will my program be able to solve a large practical input?

Q2. If not, how might | understand its performance characteristics so as to improve it?

< Why is my program so slow? > <Why does it run out of memory?>

~/cos126/loops> java Factors 11111111111111111
2071723 536322235

takes a few seconds

~/cosl26/recursion> java Fibonacci 80

23416728348467685
\

takes about 3 years (!)

~/cos126/loops> java Ruler 100
Exception 1n thread "
java. lang.OutOfMemoryError

main"

Our approach. Combination of experiments and mathematical modeling.
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Two-sum problem

Two-sum problem. Given an array with n distinct integers, how many pairs sum to zero?

~/cosl26/performance> more input5.txt
30 -40 20 40 -20

~/cosl26/performance> java-introcs TwoSum < input5.txt
2

~/cosl26/performance> more inputlM.txt
30 -40 20 40 -20 ...

~/cosl26/performance> java-introcs TwoSum < inputlM.txt

-

can my program solve large instances’!

30 -40 20 40 —20
1 a[1] aljl] sum
1 —40 40 0
2 20 —-20 0




Two-sum implementation

Two-sum problem. Given an array with n distinct integers, how many pairs sum to zero?

Brute-force algorithm.
* Process all distinct pairs.

* |Increment counter when pair sums to 0.

public static int count(long[] a) {

a.length;

int count = O;

for (int 1 =0; 1 <n; 1++)

for (Ant jJ = 1+1; J < n; J++) <
if (a[i1] + a[3j] == 0)
count++;
return count;

1nt n =

avoid double counting pairs
(e.g.,1-3 and 3—1)

Q. How long will this program take for n =1 million integers?

30 —-40 20 40 —-20
1 J al1] alj] sum
0 1 30 —40 -10
0 2 30 20 50
0 3 30 40 70
0 4 30 —20 10
1 2 —40 20 —20
1 3 —40 40 0
1 4 —40 —20 —60
2 3 20 40 60
2 4 20 —20 0
3 4 40 —-20 20




Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

Observation. The running time T'(n) increases as a function of the input size n.

~/cosl26/performance> java-introcs TwoSum < 10Kints.txt
12

~/cosl26/performance> java-introcs TwoSum < 25Kints.txt
14

tick tick tick tick tick tick
tick tick tick tick tick tick

~/cosl26/performance> java-introcs TwoSum < 50Kints.txt
35

tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick tick tick tick tick




Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

n

time (seconds) t

10,000

25,000

50,000

75,000

100,000
150,000
200,000
300,000
400,000

0.025

0.187

0.766
1.72
3.18
6.09
12.3
28.1
50.8

t Apple M2 Pro with 32 GB memory
running OpenJDK 11 on MacOS Ventura
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Data analysis: standard plot

Standard plot. Plot running time 7' (n) vs. input size n.

n

time (seconds) t

10,000
25,000
50,000
75,000
100,000
150,000
200,000
300,000
400,000

0.025

0.187

0.766
1.72
3.18
6.09
12.3
28.1
50.8

60 T

running time 1(n)
o J~
S Ch

(W
)

Hypothesis. The running time obeys a power law: T(n) =a x n” seconds.

Questions.

How to validate hypothesis? How to estimate constants a and b ?

100K

200K

input size n

300K

400K
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Data analysis: log-log plot

Log-log plot. Plot running time T'(n) vs. input size n using log-log scale.

h time (seconds) 1t 100
10,000 0.025
25,000 0.187 10
50,000 0.766 =
75,000 1.72 § '
100,000 3.18 =
150,000 6.09 § 01
200,000 12.3
300,000 28.1
400,000 50.8 ool 10K 100K 1.000K

input size n

“quadratic algorithm”

Regression. Fit straight line through data points. / (stay tuned)
Hypothesis. The running time T (n) is about 3.18 x 107!Y x n* seconds.



Doubling test: estimating the exponent b

Doubling test. Run program, doubling the size of the input.

* Assume running time obeys a power law T (n) = a x n”.

« Estimate b =log, ratio.

n time (seconds) ratio log, ratio
| b
10,000 0.025 - - T e
- T(n/2) a(n/2)°
20,000 0.15 6.0 2.6
b = log, (M)
40,000 0.55 37 1.9 > T(n/2)
30,000 2.0 3.6 1.9 why the log, ratio works
160,000 3.1 4.1 20 «—— log, (8.1/2.0)=2.02
320,000 32.5 4.0 2.0

|

seems to converge to a constantb = 2.0
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Doubling test: estimating the leading coefficient a

Doubling test. Run program, doubling the size of the input.
* Assume running time obeys a power law 7' (n) = a x n”.
- Estimate b =log, ratio.

* Estimate a by solving T(n) = a x n® for a sufficiently large value of n.

n time (seconds) ratio log, ratio
10,000 0.025 -
20,000 0.15 6.0 2.6
40,000 0.55 3.7 1.9 32.5 = ax 320,000
80,000 2.0 36 1.9 = a=317x1070
160,000 3.1 4.1 2.0
320,000 325 4.0 2.0

almost identical hypothesis

Hypothesis. Running time is about 3.17 x 107" x n* seconds. =< to one obtained via regression
(but less work)
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Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 64,000.

A. 400 seconds
B. 600 seconds
C. 800 seconds

D. 1,600 seconds

time (seconds)

2,000
4,000
3,000
16,000
32,000

64,000

0.08

0.40

3.20

26.0

205.0

?

15



Machine invariance

Hypothesis. Running times on different computers differ by (roughly) a constant factor.

Note. That factor can be several orders of magnitude.
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1970s
(VAX-11/780)

10,000x faster

2020s
(Macbook Pro M2)

futuristic counterexample?
(quantum computer)
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Experimental algorithmics

System independent effects.

* Al g0 rithm. ) determines exponent b
. Input data. in power law T(n):axnb
) determines leading coefficient a
System dependent effects. in power law T(n) = a x n”

 Hardware: CPU, memory, cache, ...

- Software: compiler, interpreter, garbage collector, ...

« System:  operating system, network, other apps, ...

Bad news. Sometimes difficult to get accurate measurements.

18



Context: the scientific method

Experimental algorithmics is an example of the scientific method.
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Chemistry
(1 experiment)

Biology
(1 experiment)

"Tsar Bomba" - Novaya Zemlya archipelago, USSR: Oct. 30, 1961

Physics
(1 experiment)

Computer Science
(1 million experiments)

Good news. Experiments are easier and cheaper than other sciences.

)
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Mathematical models for running time

Total running time: sum of frequency x cost for all operations.
* Frequency depends on algorithm and input data.

* Cost depends on CPU, compiler, operating system, ...

Che New Hork Times

PROFILES IN SCIENCE

The Yoda of Silicon
Valley

Donald Knuth, master of algorithms, reflects on 50 years
of his opus-in-progress, “The Art of Computer

. ”
Programming.
The Art of The Art of The Art of The Art of
Computer Computer Computer Computer

Programming

DONALD E. KNUTH

Programming

Seminumerical Algorithms

DONALD E. KNUTH

Programming

DONALD E. KNUTH

Programming

DONALD E. KNUTH
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Example: one-sum

Q. How many operations as a function of input size n?

int count = 0;
for (ant 1 =0; 1 < n; 1++)
1t (a[1] == 0)

count++;
operation cost (ns) t frequency
variable declaration 2/5 2 B
assignment statement 1/5 2
less than compare 1/5 n+1
equal to compare 1/10 . > tedious to count exactly
array access 1/10 n
increment 1/10 nto2n )

[ representative estimates (with some poetic license)



Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time. -« array accesses, compares, API calls,
floating-point operations, ...

int count = 0;
for (int 1 = 0; 1 < n; 1++)

1t (al1] == 0) < exactly n array accesses
count++:
operation cost (ns) t frequency

variable declaration 2/5 2
assignment statement 1/5 2

less than compare 1/5 n+1

equal to compare 1/10 n

array access 1/10 @ < cost model = array accesses

increment 1/10 nto2n



Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.

Big Theta notation. Discard lower-order terms and leading coefficient.

function tilde notation big Theta
4n°> +20n + 16 ~4n? O°)
Tn? + 10 nlog,n + 56 ~7n* O(n?)
Yon> — %n? + % n ~Y6 n’ O>)
N J
Y
discard lower-order terms T

(e.g.,n =1,000:166.67 million vs. 166.17 million) T

Rationale.
 When n is large, lower-order terms are negligible.

« When n is small, we don’t care.



Example: two-sum analysis

Goal. Estimate running time as a function of input size n.

int count = 0;
for (int 1 =0; 1 < n; 1++)
for (int J = 1+1; J < n; J++)
1t (al1] + al[j] == 0)
count++; when i =1

|

m—-1D+mn-2)+...+42+1+0

|

Step 1. Use array accesses as cost model. when i =0

Step 2. ©O(n?) array accesses.

Bottom line. Mathematical model explains and supports empirical experiments.

|

provides exponent in power law
(but not leading coefficient)

nn—1)

25



All models are wrong

Model deficiencies.

* |Input size n does not go to infinity. < computers (and the universe) are finite
* Can be inaccurate when n is small.

« Cost model may not be a perfect proxy for running time.

essentially,
all models are wrong,

26



Analysis of algorithms: quiz 2

Estimate running time as a function of »n ?

A. On) int count = 0;
for (Aint 1 =0; 1 <n; 1++) {
2
B. O®? for (int 4 - 0 4 - n: Geuy o
C O(n?) for (int k = 0; k < n; k++) {
| if (a[i] + a[j] >= al[kl)
D. Omn%Y count++;

¥

27



Analysis of algorithms: quiz 3

Estimate running time as a function of »n ?

A.  O(n) int count = O:
R O(n?) for (Aint 1 =0; 1 <n; 1++) {
C O(n?) for (int j = 0; J < n; J++) {
' if (a[i] == 0)
D. @(n4) count++;
}

for (int k = 0; k < n; k++) {
if (ali] >= alk])
count++:

28
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Key questions and answers

e

Al.
A2.

EX.

Does the running time of my program approximately obey a power law ?

Probably yes. Might also have a logn factor.

How do you know?

Computer scientists have observed power laws for many many specific algorithms.

Program built from simple constructors (statements, loops, nesting, function calls).

Logarithmic running time.

1nt count = 0O;
for (Aint 1 =1; 1 <= n; 1 = 1%2)
count++:

code fragment takes ®O(log n) time

The Art of

Computer
< l ; The Art of
Programming

Computer

anee  Programming

DONALD E

Algorithms

lllllllllllllll | xevin warwe

The Art of
s Computer. The Art of
t al Algorithms Programmlng Computel‘

DONALD E. KNUT

Programming

DONALD E. KNUTH
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Common order-of-growth classifications

order of growth

O(1)

O(log n)

On)

O(n log n)

O(n?)

On?)

O02"

):

)e

constant

logarithmic

linear

linearithmic

quadratic

cubic

exponential

typical code framework

for (Aint 1 =n; 1 >>1; 1 /= 2)

{ }

for (int 1 =0; 1 < n; 1++)
{ ... }
mergesort

(stay tuned)

for (Aint 1 =0; 1 < n; 1++)
for (int j = 0; j < n; j++)
{ ... }

for (Aint 1 =0; 1 < n; 1++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)

towers of Hanoi

description

statement

divide
in half

single
loop

divide and
conquer

double
loop

triple
loop

exhaustive
search

example

add two
numbers

binary
search

find the

maximum

mergesort

check
all pairs

check
all triples

check
all subsets

T(2n) / T(n)

27’1

31



Examples of order-of-growth

computation implementation

double sum = 0.0;

dotproduct for (int 1 = 0; 1 < n; 1++)
sum += al1] * b[1];

for (int 1 = 0; 1 < n; 1++)
matrix addition for (int 3 = 0; J < n; J++)

clillyl = al1lly] + bL1]L3]l;

for (int 1 =0; 1 < n; 1++)
for (Aint J =0; J < n; J++)
for (int k = 0; k < n; k++)
cli][j] += al1l[k] * b[kI[]J];

matrix multiplication

public static int ruler(int n) {
if (n == 0) return " ";

ruler function return ruler(n-1) + n + ruler(n-1);

order of growth

O(n)

Om?)

O(n?)

O02"

note: input size

IS n

2

, notn

32



Analysis of algorithms: quiz 4

What is order of growth of the running time as a function of n?

Hint: use array accesses as cost model.

int count = 0O;
for (Aint 1 =0; 1 < n; 1++)
for (Ant j = 1+1; J < n; J++)
for (int k = n; k >= 1; k = k/2)
1f (a[1] + al[j] >= alk-1])
count++;

A. O®@m?
B. ©Om?logn)
C. 0Omd

D. O’ logn)

33
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Memory basics

Bit (binary digit). 0 or 1.
Byte (8 bits). Smallest addressable unit of computer memory.

term symbol quantity
0 o
_ byte B 8 bits
1 e ‘g & kilobyte KB 1000 bytes
megabyte MB 1000~ bytes
gigabyte GB 1000° bytes
terabyte TB 1000* bytes

I
0o L00To0torrmo

OTOoToTo0TOTOWN
out®
s

OTO00TOTOT0!

roroo

Zororoooro

ZI'roo
Zorororroo

2O 7070

6 GB main memory,
1 TB internal storage

35



Typical memory usage in Java for primitive types and arrays

type bytes
boolean 1
byte 1
char )
int 4 <«—— 32 bits
float 4
long ]
double { <«—— 064 bits
String n o+ 40 «—— ASCIstring
of length n

built-in types

type bytes
boolean|] In + 24

int[] dn + 24
double[] 7 + <

one-dimensional arrays (length n)

type bytes
boolean[][] ~ 1 n?
int[][] ~4 n?
double[][] ~8n?

two-dimensional arrays (n-by-n)

array overhead = 24 bytes

36



Analysis of algorithms: quiz 5

How much memory (in bytes) does result use as a function of n?

A.

B.

C.

D.

~ 2n bytes
~ n’ bytes
~ 2n* bytes

~ 2" bytes

public class Mystery {

public static String f(int n) {
1f (n == 0) return "";
return f(n-1) + "*" + f(n-1):

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
String result = f(n);
StdOut.println(result);

37



Turning the crank: summary

Running time analysis. Analyze running time 7(n) as a function of input size n.

Empirical analysis.
« Run code on specific machine and inputs and measure running times.
« Formulate a hypothesis for running time.

* Enables us to make predictions.

Mathematical analysis.

* Analyze algorithm on abstract machine.

use big-Theta notation
to simplify analysis

* Count frequency of dominant operations. <

* Enables us to explain behavior.

This course. Learn to use both.

38
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