C O1nN p uter S C 1 cCnce ROBERT SEDGEWICK | KEVIN WAYNE

2.1 FUNCTIONS

» flow-of-control

> properties

COMPUTER
S c I E N c E
e > number-to-speech

> call by value

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

any program you might want to write

objects

N J
ﬁ/\ A\
A\ ‘
st ©
v /

P ﬁx graphics, sound, and image 1/O
“
m

primitive data types assignment statements

divide a program

into functions

COMPUTER
SCIENCE

. An Inte d ciplinary Approcch

httpsi//introcs.cs:princeton.edu

2.1 FUNCTIONS

> flow-of-control
> properties
> calf by valve

~ number-to-speech

https://introcs.cs.princeton.edu

Functions

Java function (static method).

input X
« Takes zero or more input arguments.
more general than *
» Returns zero or one output value. ‘ mathematical functions
« May cause side effects.
_ side

Benefits. Makes code easier to read, test, debug, reuse, and extend.
Familiar examples. *

« Built-in functions: Math.random(), Math.abs(), Integer.parseInt(). output f(x)

 Our l/O libraries: StdIn.readInt(), StdDraw.1ine(), StdAudio.play().

 User-defined functions: main().

Flow of control

Mechanics of a function call.

» Control transfers from calling code to function code, passing argument values.

* Function code executes, producing a return value.

» Control transfers back to calling code. < function-call expression
evaluates to return value

argument

public class Max { values

public static void main(String[] args) {

int a = 26; function call
int b = 100; — expression

1nt max = Math.max(a, b)

StdOut.printin(max) ;

return value

Bottom line. Functions provide a useful way to control the flow of execution.

26, 100

Math.max()

100

Anatomy of a Java function (static method)

To implement a Java function:

EX.

Choose a method name.

Declare type and name of each parameter variable.

Specify type for return value.

for now, always
public and static

Include modifiers. -
Implement method bodly,
including a return statement.

1 1 1

Harmonic sum: H =14+—+—+4+... +—.
2 3 n

method header

>

return method

modifiers lype name type

/|

public static double [sumint n) {

double result

for (int j = 1; J <= n; J++)
result += 1.0 / 7J;

= 0.0;

return statement

>l return result;

parameter

|/

<

parameter
name

method body

Function call trace (i = 0)

public class Harmonic 1 arg value] n result
public static double sum(int n 0 1 1.0 1 0.0
double result 0.0 " L0
for (int 3 = 1; 3 n; j
result 1.0 / 3
return result _ | |
variable trace in main() variable trace in sum()

public static void main(String args
for (Int 1 0; 1 args.length; 1
1nt arg Integer.parselnt(args/|i
double value = sum(arg
StdOut.printin(value

~/cosl26/functions> java-introcs Harmonic 1 2 5
1.0

Function call trace (i = 1)

public class Harmonic 1 arg value] n result
public static double sum(int n 0 1 1.0 2 0.0
double result 0.0 | 2 e " L0

for (int j = 1;] n; J
result 1.0 / 7 2 1.5

return result _ . .
variable trace in main() variable trace in sum()

public static void main(String args
for (Int 1 0; 1 args.length; 1
1nt arg Integer.parselnt(args/|i
double value = sum(arg
StdOut.printin(value

~/cosl26/functions> java-introcs Harmonic 1 2 5
1.0

1.5

Function call trace (i = 2)

public class Harmonic ! arg vl] " resE
public static double sum(int n 0 1 1.0 > 0.0
double result = 0.0 1 5 1.5 1 1.0
for (int j = 1;] n; J
return result
variable trace in main() 3 1.8333
_ _ _ _ _ 4 2.0833
public static void main(String args
for (int 1 0; 1 args. length; 1 5 2.2833
1nt arg Integer.parselnt(args/|i
double value sum(arg variable trace in sum()

StdOut.printin(value

~/cosl26/functions> java-introcs Harmonic 1 2 5
1.0

1.5
2.283333333333333

Functions: quiz |

What is the result of executing this program with the given command-line argument?

A, 126.0 public class Mystery
B. 378.0 . . .

public static double triple(double X
C. Compile-time error. return 37X

D. Run-time error.
public static void main(Stringl[] args

double x = Double.parseDouble(args|0
triple(x
StdOut.printlin(x

~/cosl26/functions> java-introcs Mystery 126.0

10

2.1 FUNCTIONS

» flow-of-control

S ALY > properties
COMPUT ER + call by valuve

SCIENCE

I e—— ~ number-to-speech

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Single return value

When a function reaches a return statement, it transfer control back to code that invoked it.
* The type of the return value must be compatible with the function’s return type.

* Java returns a single return value to the calling code.

|

that value can be of any type

(double, String, int[], ...)
return type

\4

public static double sum(int n) {

double result = 0.0;
for (Aint 1 = 1; 1 <= n; 1++)

result += 1.0 / 1;

return statement > return resu1t;

12

Multiple return statements

Control is transferred back to calling code upon reaching the first return statement.

public static int signum(int x) f{ public static double signum(double x) {
if (x < 0.0) return -1; if (x < 0) return -1;
else if (x > 0.0) return +1; | < multiple return

1if (x > 0) return +1;
statements
else return O; return O;

sign (signum) function equivalent function

—1 if x<O
signum(x) = O if x=0
+1 if x>0

Note. This function appears in Java’s Integer library.

Multiple arguments

A function can take multiple arguments.
« Each parameter variable has a type and a name.

 The argument values are assigned to the corresponding parameter variables.

Ex. Gaussian (normal) probability distribution function: ¢(x, u,0) =

pdf(88.0, 90.0, 10.0)

public class Gaussian 1 J// l ‘\\\

public static double pdf(double x, double mu, double sigma) { <
double z = (x - mu) / sigma;
return Math.exp(-z#z / 2) / (sigma * Math.sqrt(2 * Math.PI));

function takes three
double arguments

14

Multiple functions

You can define many functions in a class.
* One function can call another function.

 The order in which the functions are defined in the file is unimportant.

public class RightTriangle {

public static double square(double x) {
return X*X;

public static double hypotenuse(double a, double b) {
return Math.sgrt(square(a) + square(b)):
| I
function calls a function function calls a function
defined in a different class defined in the same class

15

Mechanics of a function call

-tic double square(double a) {

return a*a;

}

variable a

value 3.0

square(3.0) |

hypotenuse(3.0, 4.0)

function-call stack

16

Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).

public class Math {

public static 1nt abs(int x) { < abs (-126) calls this function
if (x < 0) return -x: (and evaluates to 126)
else return X;

}

public static double abs(double x) { -« abs(-126.0) calls this function
if (x < 0) return -x;: (and evaluates to 126.0)
else return Xx;

}

Note. These two overloaded functions appear in Java’s Math library.

17

Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).

public class Gaussian 1{

public static double pdf(double x) { < pdf(3.0) calls this function
return pdf(x, 0.0, 1.0);

}

public static double pdf(double x, double mu, double sigma) { <
double z = (x - mu) / sigma;
return Math.exp(-z#z / 2) / (sigma * Math.sqgrt(2 * Math.PI));

}

¥ <

Bottom line. Java determines which function to call based on list of arguments.

pdf (3.0, 0.0, 1.0) calls this function

pdf (3.0, 0.0, "126") is incompatible
(compile-time error)

18

Functions: quiz 2

Which value does triple(126) return?

A. 378

B. 378.0

C. "126126126"

D. Compile-time error.

E. Run-time error.

public class Mystery {
public static double triple(double x) {

return 3%Xx;

public static String triple(String x) {
return X + X + X,

19

Scope of a variable

Def. The scope of a variable is the code that can refer to it by name. - code following its declaration, in the same block

Significance. Can develop functions independently. - variables defined in one function do not

interfere with variables defined in another

Best practice. Declare variables so as to limit their scope.

public class Harmonic {

: : : scope of n
<€
public static double sum(int n) { (entire method)
seae off s ,T double result = 0.0;
_ for (int 1 = 1; 1 <= n; 1++)
scope of 1)I result += 1.0 / 1;
/ L return result; different variables
different variables ¥ named n
named 1
public static void main(String[] args) { < swapéqfargs[]
_ _ _ _ (entire method)
_ 1 for (int 1 = 0; 1 < args.length; 1++) {
scope of 1 >

scope of n

int n = Integer.parselnt(args[i]); I(
StdOut.printlin(sum(n));

Side effects

Def. A side effect of a method is anything it does besides computing and returning a value.

* Print to standard output.

W

%
¢i

Muscle Pain

* Draw a circle.

ﬁ - ‘.‘&
s \"il dg
« Play an audio file. < produce output n f \ 9

» Display a picture. Constipation/ Difficulty

Diarrhea Swallowing

Nausea Vomiting

« Launch a missile.

 Consume input.

 Mutate an array. < stay tuned

Note. The primary purpose of some methods is to produce side effects, not return values.

Void functions

A method need not return a value.
 |ts purpose is to produce side effects.
» Use keyword void as return type.

* No explicit return statement needed. -

public static void loop(String filename, int n) {
for (Aint1 =0; 1 <n; 1++) {
StdAudio.play(filename) ;

loop an audio file n times

upon reaching the end of method,
control returns to calling code

public static void main(String[] args) {
int n = Integer.parselnt(args|[0]);
1f (n <= 0) {
StdOut.printin("n must be positive");
return;

abort if the wrong number of command-line arguments

22

2.1 FUNCTIONS

» flow-of-control

e ALY ~ properties
COMPUTER > call by value

SCIENCE

I e—— ~number-to-speech

httpsi//introcs.cs:princeton.edu

https://introcs.cs.princeton.edu

Call by value

Java uses call by value to pass arguments to methods.

for primitive types, the value is the data-type value;

» Java evaluates each argument expression to produce a value. -« for arrays (and other non-primitive types),

the value is an “object reference”

« Java assigns each value to the corresponding parameter variable.

public static void main(String[] args) {
int a = 100;
int b = 26;

int max = Math.max(a, 4%b);

[V

104 argument
1 | expressions

argument values

100 104

public static 1nt max(int x, 1nt y) {

if (x >= y) return x; T
return y,; parameter
1 variables

return value

24

Functions: quiz 3

What does the following program print?

A. -126
B. 126
C. Compile-time error.

D. Run-time error.

public class Mysteryl {

public static void negate(int a) {
a = -a;

}

public static void main(String[] args) {
int a = 126;
negate(a) ;
StdOut.printin(a) ;

25

Functions: quiz 4

What does the following program print?

A. 12 6
B. -12 -6
C. Compile-time error.

D. Run-time error.

public class Mystery?2 {

public static void negate(int[] b) {
for (int 1 = 0; 1 < b.length; 1++)
bl1] = -b[1];
¥

public static void main(String[] args) {
int[] a =1{ 12, 6 };
negate(a) ;
StdOut.printinCalO0] + " " + a[l]);

26

Side effects with arrays

Functions and arrays. / shuffle, reverse, sort, shift, ...
« A function can have the side effect of changing the elements in an argument array.
« But the function cannot change the argument array itself. - to refer to a different array (e.g., of a different length or type)
_ all and argsl[] refer ~/cosl26/functions> java-introcs Mutate A B C D
public class Mutate / to the same array C
A
public static void shuffle(String[] a 3
int n a.length D
for (int 1 0; 1 n; 1
intr int Math. random 1+1 ~/cosl26/functions> java-introcs Mutate A B C D
String temp = alr B
alr all «——swaps a[r] and a[i]
ali temp

~/cosl26/functions> java-introcs Mutate COS 126
126
COS

public static void main(String args
shuffle(args
for (int 1 0; 1 args.length; 1
StdOut.printinCargs|i

27

COMPUTER
SCIENCE

. Anlnte d ciplinary Approach

httpsi//introcs.cs:princeton.edu

2.1 FUNCTIONS

> flow-of-control
> properties
> calf by valve

» number-to-speech

https://introcs.cs.princeton.edu

Number-to-speech

Goal. Write a program to say/print a positive integer. -« use U.S. conventions

Place Value

einiors | winions | vhousands | ones

Algorithm.
humber spoken
« Split into 3-digit groups, from right-to-left.
* For each group, from left-to-right: 126 one hundred twenty six
— Sdy 3-digit integer < see algorithm on next slide 2,024

two thousand twenty four

- if 3-digit integer is not 0, say group name

401,000,011 four hundred one million eleven
(billion, million, thousand) T

but not for
ones group

Number-to-speech: procedural decomposition

Small-integer rule. If number is 1-19, say number; if 0, say nothing.

number spoken
Two-digit rule. 6 Six
* If number is 1-19, say number. - small-integer rule 0 [(nothing]
» Otherwise, break up into tens and ones digits.
.. : . 26 twenty Six
- say tens digit as twenty, thirty, ..., ninety
126 one hundred twenty-six

— Sdy Oones digit < small-integer rule

Three-digit rule. Break up into hundreds digit and 2-digit remainder.

 If hundreds digit is not 0, say digit, followed by hundred. -« small-integer rule

« Say 2-digit remainder. - two-digit rule

Text-to-speech approach

)

Domain-specific synthesis. Concatenate pre-recorded words to form desired output.

word audio file
| fre | fre | e | ifre
WAV) WAV) WAV) WAV) 1,2,3,...,19 1.wav, 2.wav, 3.wav, ...
1.wav hundred.wav 20.wav 6.wav
20, 30, 40, ..., 90 20.wav, 30.wav, 40.wav, ...
Ki h 12
speaking the number 126 hundred hundred . way
thousand thousand.wav
million million.wav
billion billion.wav

vocabulary

31

Program skeleton

O

[

</>

=7

Starting point. Write program skeleton.

* Function headers and comments.

* Function stubs (placeholder code for function bodies). <

 Test main() that calls functions.

public class SayNumber {

public static void sayWord(String word) {
StdOut.printin("sayWord()");

}

public static void saySmallInteger(int n) {
StdOut.printin("saySmallInteger()");

}

public static void sayTwoDigitInteger(int n) {
StdOut.printin("sayTwoDigitInteger()");

}

for non-void functions, return a compatible value
(so that program will compile)

public static void sayThreeDigitInteger(int n) {
StdOut.printin("sayThreeDigitInteger()");

¥

public static void sayPositivelnteger(int n) {
StdOut.printin("sayPositivelnteger()");

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
sayPositivelnteger(n);

}

32

Function implementations

</>

[

O

public class SayNumber {

public static void sayWord(String word) {
StdAudio.play(word + ".wav'");

¥

public static void saySmallInteger(int n) {
1f (n > 0) sayWord("" + n);
}

public static void sayTwoDigitInteger(int n) {
1f (n < 20) saySmallInteger(n):;
else {
int tensDigit = n / 10;
int onesDigit = n % 10;
sayWord("" + (10 * tensDigit));
saySmallInteger(onesDigit);

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
sayPositivelnteger(n) ;

public static void sayThreeDigitInteger(int n) {
int hundredsDigit = n / 100;
int twoDigits = n % 100;
1f (ChundredsDigit > 0) {
saySmallInteger(ChundredsDigit);
sayWord("hundred") ;

}
sayTwoDigitInteger(twoDigits) ;

public static void sayPositivelnteger(int n) {

String[] PLACES = { "", "thousand”, "million", "billion" };
int[] groups = new 1nt[PLACES. length];

for (int 1 = 0; 1 < groups.length; 1++) {
groups[i] = n % 1000;
h =n / 1000;

extract the
«— 3-digit groups
(right-to-left)

}

for (int i = groups.length - 1; i >= 0; i--) {
sayThreeDigitInteger(groups[i]);
if (i > 0 & groups[i] > 0) sayWord(PLACES[i]);

} |

process 3-digit groups (left-to-right)

33

Testing)

Principle. Supply inputs that activate all possible execution paths through program. - so that all code gets tested

~/cosl26/functions> java-introcs SayNumber one-digit number

) [speaks "six"]

~/cos126/functions> java-introcs SayNumber two-digit number

) [speaks "twenty six"]

~/cosl26/functions> java-introcs SayNumber three-digit number

) [speaks "one hundred twenty six"]

~/cosl26/functions> java-introcs SayNumber typical case

i) [speaks "two thousand twenty four"]

~/cosl26/functions> java-introcs SayNumber 401000011 < no thousands unit

) [speaks "four hundred one million eleven"]

Function call graph

Function call graph. Graphical representation of function calls within a program.

f

.

sayPositivelnteger() j

A4

A4

\ 4

A4

(
L

sayThreeDigitInteger () j

\ 4

[sayTwoDi1gitInteger()

~

J

A 4

>[saySmallInteger() j

\ 4

:[sayWord() }
> <

(>StdAudio.p1ay()J

|

35

Procedural decomposition

Decomposition. Break up a complex programming problem into smaller functional parts.

Procedural decomposition. Implement each part as a separate function.

Ex. Say a positive integer.
* Play an audio file corresponding to a word. '
« Say a small integer.
« Say a two-digit integer.
« Say a three-digit integer.

Benefits. Supports the 3 Rs:
« Readability: understand and reason about code.
- Reliability: test, debug, and maintain code.

« Reusability: reuse and share code.

36

Summary

Functions. Provide a fundamental way to change flow of control of program.
« Java evaluates the arguments and passes by value to function.
* Function initializes parameter variables with corresponding argument values.

* Function computes a single return value and returns it to caller.

Applications.
« Scientists use mathematical functions to calculate formulas.
* Programmers use functions to build modular programs.

* You use functions for both.

This lecture. Write your own functions.

Next lecture. Build reusable libraries of functions.

Input X

function f(x)

v

output f(x)

side
effects

37

Credits

media source license

Gears Adobe Stock education license
Function Gradient Adobe Stock education license

Function Machine Wyvbailey public domain
Normal Distribution Adobe Stock education license
Chemotherapy Side Effects Adobe Stock education license
Decimal Place Value Adobe Stock education license
Code Testing SAMDesigning education license

SpongeBob SquarePants Multitasking Giphy

Modular Design

Modular Management

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/vector-gears/12539996
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/function-gradient-icon/555415810
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Function_machine2.svg
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/the-standard-normal-distribution-graph-gaussian-bell-graph-curve-bell-shaped-function-vector-illustration-isolated-on-white-background/536545918
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/chemotherapy-side-effects-icons-depict-the-list-of-reactions-and-issues-of-chemo-treatment-on-a-human-who-are-diagnosis-with-cancer/244886859
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/decimals-place-value-chart-in-mathematics/527906603
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/code-testing-line-color-icon/612341019
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://giphy.com/gifs/funny-humor-spongebob-a9RgWy99d17RC
https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization

