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Basic building blocks for programming
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Functions

Java function (static method).

input X
« Takes zero or more input arguments.
more general than *
» Returns zero or one output value. ‘ mathematical functions
« May cause side effects.
_ side

Benefits. Makes code easier to read, test, debug, reuse, and extend.
Familiar examples. *

« Built-in functions: Math.random(), Math.abs(), Integer.parseInt(). output f(x)

 Our l/O libraries: StdIn.readInt(), StdDraw.1ine(), StdAudio.play().

 User-defined functions: main().



Flow of control

Mechanics of a function call.

» Control transfers from calling code to function code, passing argument values.

* Function code executes, producing a return value.

» Control transfers back to calling code. < function-call expression
evaluates to return value

argument

public class Max { values

public static void main(String[] args) {

int a = 26; function call
int b = 100; — expression

1nt max = Math.max(a, b)

StdOut.printin(max) ;

return value

Bottom line. Functions provide a useful way to control the flow of execution.

26, 100

Math.max()

100



Anatomy of a Java function (static method)

To implement a Java function:

EX.

Choose a method name.

Declare type and name of each parameter variable.

Specify type for return value.

for now, always
public and static

Include modifiers. -
Implement method bodly,
including a return statement.

1 1 1

Harmonic sum: H =14+—+—+4+... +—.
2 3 n

method header

>

return method

modifiers lype  name type

/|

public static double [sumint n) {

double result

for (int j = 1; J <= n; J++)
result += 1.0 / 7J;

= 0.0;

return statement

>l return result;

parameter

|/

<

parameter
name

method body



Function call trace (i = 0)

public class Harmonic 1 arg value ] n result
public static double sum(int n 0 1 1.0 1 0.0
double result 0.0 " L0
for (int 3 = 1; 3 n; j
result 1.0 / 3
return result _ | |
variable trace in main() variable trace in sum()

public static void main(String args
for (Int 1 0; 1 args.length; 1
1nt arg Integer.parselnt(args/|i
double value = sum(arg
StdOut.printin(value

~/cosl26/functions> java-introcs Harmonic 1 2 5
1.0




Function call trace (i = 1)

public class Harmonic 1 arg value ] n result
public static double sum(int n 0 1 1.0 2 0.0
double result 0.0 | 2 e " L0

for (int j = 1; ] n; J
result 1.0 / 7 2 1.5

return result _ . .
variable trace in main() variable trace in sum()

public static void main(String args
for (Int 1 0; 1 args.length; 1
1nt arg Integer.parselnt(args/|i
double value = sum(arg
StdOut.printin(value

~/cosl26/functions> java-introcs Harmonic 1 2 5
1.0

1.5




Function call trace (i = 2)

public class Harmonic ! arg vl ] " resE
public static double sum(int n 0 1 1.0 > 0.0
double result = 0.0 1 5 1.5 1 1.0
for (int j = 1; ] n; J
return result
variable trace in main() 3 1.8333
_ _ _ _ _ 4 2.0833
public static void main(String args
for (int 1 0; 1 args. length; 1 5 2.2833
1nt arg Integer.parselnt(args/|i
double value sum(arg variable trace in sum()

StdOut.printin(value

~/cosl26/functions> java-introcs Harmonic 1 2 5
1.0

1.5
2.283333333333333




Functions: quiz |

What is the result of executing this program with the given command-line argument?

A, 126.0 public class Mystery
B. 378.0 . . .

public static double triple(double X
C. Compile-time error. return 37X

D. Run-time error.
public static void main(Stringl[] args

double x = Double.parseDouble(args|0
triple(x
StdOut.printlin(x

~/cosl26/functions> java-introcs Mystery 126.0

10
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Single return value

When a function reaches a return statement, it transfer control back to code that invoked it.
* The type of the return value must be compatible with the function’s return type.

* Java returns a single return value to the calling code.

|

that value can be of any type

(double, String, int[], ...)
return type

\4

public static double sum(int n) {

double result = 0.0;
for (Aint 1 = 1; 1 <= n; 1++)

result += 1.0 / 1;

return statement > return resu1t;

12



Multiple return statements

Control is transferred back to calling code upon reaching the first return statement.

public static int signum(int x) f{ public static double signum(double x) {
if (x < 0.0) return -1; if (x < 0) return -1;
else if (x > 0.0) return +1; | < multiple return

1if (x > 0) return +1;
statements
else return O; return O;

sign (signum) function equivalent function

—1 if x<O
signum(x) = O if x=0
+1 if x>0

Note. This function appears in Java’s Integer library.



Multiple arguments

A function can take multiple arguments.
« Each parameter variable has a type and a name.

 The argument values are assigned to the corresponding parameter variables.

Ex. Gaussian (normal) probability distribution function: ¢(x, u,0) =

pdf(88.0, 90.0, 10.0)

public class Gaussian 1 J// l ‘\\\

public static double pdf(double x, double mu, double sigma) { <
double z = (x - mu) / sigma;
return Math.exp(-z#z / 2) / (sigma * Math.sqrt(2 * Math.PI));

function takes three
double arguments

14



Multiple functions

You can define many functions in a class.
* One function can call another function.

 The order in which the functions are defined in the file is unimportant.

public class RightTriangle {

public static double square(double x) {
return X*X;

public static double hypotenuse(double a, double b) {
return Math.sgrt(square(a) + square(b)):
| I
function calls a function function calls a function
defined in a different class defined in the same class

15



Mechanics of a function call

-tic double square(double a) {

return a*a;

}

variable a

value 3.0

square(3.0) |

hypotenuse(3.0, 4.0)

function-call stack

16



Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).

public class Math {

public static 1nt abs(int x) { < abs (-126) calls this function
if (x < 0) return -x: (and evaluates to 126)
else return X;

}

public static double abs(double x) { -« abs(-126.0) calls this function
if (x < 0) return -x;: (and evaluates to 126.0)
else return Xx;

}

Note. These two overloaded functions appear in Java’s Math library.

17



Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).

public class Gaussian 1{

public static double pdf(double x) { < pdf(3.0) calls this function
return pdf(x, 0.0, 1.0);

}

public static double pdf(double x, double mu, double sigma) { <
double z = (x - mu) / sigma;
return Math.exp(-z#z / 2) / (sigma * Math.sqgrt(2 * Math.PI));

}

¥ <

Bottom line. Java determines which function to call based on list of arguments.

pdf (3.0, 0.0, 1.0) calls this function

pdf (3.0, 0.0, "126") is incompatible
(compile-time error)

18



Functions: quiz 2

Which value does triple(126) return?

A. 378

B. 378.0

C. "126126126"

D. Compile-time error.

E. Run-time error.

public class Mystery {
public static double triple(double x) {

return 3%Xx;

public static String triple(String x) {
return X + X + X,

19



Scope of a variable

Def. The scope of a variable is the code that can refer to it by name. - code following its declaration, in the same block

Significance. Can develop functions independently. - variables defined in one function do not

interfere with variables defined in another

Best practice. Declare variables so as to limit their scope.

public class Harmonic {

: : : scope of n
<€
public static double sum(int n) { (entire method)
seae off s ,T double result = 0.0;
_ for (int 1 = 1; 1 <= n; 1++)
scope of 1 )I result += 1.0 / 1;
/ L return result; different variables
different variables ¥ named n
named 1
public static void main(String[] args) { < swapéqfargs[]
_ _ _ _ (entire method)
_ 1 for (int 1 = 0; 1 < args.length; 1++) {
scope of 1 >

scope of n

int n = Integer.parselnt(args[i]); I(
StdOut.printlin(sum(n));



Side effects

Def. A side effect of a method is anything it does besides computing and returning a value.

* Print to standard output.

W

%
¢i

Muscle Pain

* Draw a circle.

ﬁ - ‘.‘&
s \"il dg
« Play an audio file. < produce output n f \ 9

» Display a picture. Constipation/ Difficulty

Diarrhea Swallowing

Nausea Vomiting

« Launch a missile.

 Consume input.

 Mutate an array. < stay tuned

Note. The primary purpose of some methods is to produce side effects, not return values.



Void functions

A method need not return a value.
 |ts purpose is to produce side effects.
» Use keyword void as return type.

* No explicit return statement needed. -

public static void loop(String filename, int n) {
for (Aint1 =0; 1 <n; 1++) {
StdAudio.play(filename) ;

loop an audio file n times

upon reaching the end of method,
control returns to calling code

public static void main(String[] args) {
int n = Integer.parselnt(args|[0]);
1f (n <= 0) {
StdOut.printin("n must be positive");
return;

abort if the wrong number of command-line arguments

22
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Call by value

Java uses call by value to pass arguments to methods.

for primitive types, the value is the data-type value;

» Java evaluates each argument expression to produce a value. -« for arrays (and other non-primitive types),

the value is an “object reference”

« Java assigns each value to the corresponding parameter variable.

public static void main(String[] args) {
int a = 100;
int b = 26;

int max = Math.max(a, 4%b);

[V

104 argument
1 | expressions

argument values

100 104

public static 1nt max(int x, 1nt y) {

if (x >= y) return x; T
return y,; parameter
1 variables

return value

24



Functions: quiz 3

What does the following program print?

A. -126
B. 126
C. Compile-time error.

D. Run-time error.

public class Mysteryl {

public static void negate(int a) {
a = -a;

}

public static void main(String[] args) {
int a = 126;
negate(a) ;
StdOut.printin(a) ;

25



Functions: quiz 4

What does the following program print?

A. 12 6
B. -12 -6
C. Compile-time error.

D. Run-time error.

public class Mystery?2 {

public static void negate(int[] b) {
for (int 1 = 0; 1 < b.length; 1++)
bl1] = -b[1];
¥

public static void main(String[] args) {
int[] a =1{ 12, 6 };
negate(a) ;
StdOut.printinCalO0] + " " + a[l]);

26



Side effects with arrays

Functions and arrays. / shuffle, reverse, sort, shift, ...
« A function can have the side effect of changing the elements in an argument array.
« But the function cannot change the argument array itself. - to refer to a different array (e.g., of a different length or type)
_ all and argsl[] refer ~/cosl26/functions> java-introcs Mutate A B C D
public class Mutate / to the same array C
A
public static void shuffle(String[] a 3
int n a.length D
for (int 1 0; 1 n; 1
intr int Math. random 1+1 ~/cosl26/functions> java-introcs Mutate A B C D
String temp = alr B
alr all «——swaps a[r] and a[i]
ali temp

~/cosl26/functions> java-introcs Mutate COS 126
126
COS

public static void main(String args
shuffle(args
for (int 1 0; 1 args.length; 1
StdOut.printinCargs|i

27
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Number-to-speech

Goal. Write a program to say/print a positive integer. -« use U.S. conventions

Place Value

einiors | winions | vhousands | ones

Algorithm.
humber spoken
« Split into 3-digit groups, from right-to-left.
* For each group, from left-to-right: 126 one hundred twenty six
— Sdy 3-digit integer < see algorithm on next slide 2,024

two thousand twenty four

- if 3-digit integer is not 0, say group name

401,000,011 four hundred one million eleven
(billion, million, thousand) T

but not for
ones group



Number-to-speech: procedural decomposition

Small-integer rule. If number is 1-19, say number; if 0, say nothing.

number spoken
Two-digit rule. 6 Six
* If number is 1-19, say number. - small-integer rule 0 [(nothing]
» Otherwise, break up into tens and ones digits.
.. : . 26 twenty Six
- say tens digit as twenty, thirty, ..., ninety
126 one hundred twenty-six

— Sdy Oones digit < small-integer rule

Three-digit rule. Break up into hundreds digit and 2-digit remainder.

 If hundreds digit is not 0, say digit, followed by hundred. -« small-integer rule

« Say 2-digit remainder. - two-digit rule




Text-to-speech approach

)

Domain-specific synthesis. Concatenate pre-recorded words to form desired output.

word audio file
| fre | fre | e | ifre
WAV ) WAV ) WAV ) WAV ) 1,2,3,...,19 1.wav, 2.wav, 3.wav, ...
1.wav hundred.wav 20.wav 6.wav
20, 30, 40, ..., 90 20.wav, 30.wav, 40.wav, ...
Ki h 12
speaking the number 126 hundred hundred . way
thousand thousand.wav
million million.wav
billion billion.wav

vocabulary

31



Program skeleton

O

[

</>

=7

Starting point. Write program skeleton.

* Function headers and comments.

* Function stubs (placeholder code for function bodies). <

 Test main() that calls functions.

public class SayNumber {

public static void sayWord(String word) {
StdOut.printin("sayWord()");

}

public static void saySmallInteger(int n) {
StdOut.printin("saySmallInteger()");

}

public static void sayTwoDigitInteger(int n) {
StdOut.printin("sayTwoDigitInteger()");

}

for non-void functions, return a compatible value
(so that program will compile)

public static void sayThreeDigitInteger(int n) {
StdOut.printin("sayThreeDigitInteger()");

¥

public static void sayPositivelnteger(int n) {
StdOut.printin("sayPositivelnteger()");

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
sayPositivelnteger(n);

}

32



Function implementations

</>

[

O

public class SayNumber {

public static void sayWord(String word) {
StdAudio.play(word + ".wav'");

¥

public static void saySmallInteger(int n) {
1f (n > 0) sayWord("" + n);
}

public static void sayTwoDigitInteger(int n) {
1f (n < 20) saySmallInteger(n):;
else {
int tensDigit = n / 10;
int onesDigit = n % 10;
sayWord("" + (10 * tensDigit));
saySmallInteger(onesDigit);

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);
sayPositivelnteger(n) ;

public static void sayThreeDigitInteger(int n) {
int hundredsDigit = n / 100;
int twoDigits = n % 100;
1f (ChundredsDigit > 0) {
saySmallInteger(ChundredsDigit);
sayWord("hundred") ;

}
sayTwoDigitInteger(twoDigits) ;

public static void sayPositivelnteger(int n) {

String[] PLACES = { "", "thousand”, "million", "billion" };
int[] groups = new 1nt[PLACES. length];

for (int 1 = 0; 1 < groups.length; 1++) {
groups[i] = n % 1000;
h =n / 1000;

extract the
«— 3-digit groups
(right-to-left)

}

for (int i = groups.length - 1; i >= 0; i--) {
sayThreeDigitInteger(groups[i]);
if (i > 0 & groups[i] > 0) sayWord(PLACES[i]);

} |

process 3-digit groups (left-to-right)

33



Testing )

Principle. Supply inputs that activate all possible execution paths through program. - so that all code gets tested

~/cosl26/functions> java-introcs SayNumber one-digit number

) [speaks "six"]

~/cos126/functions> java-introcs SayNumber two-digit number

) [speaks "twenty six"]

~/cosl26/functions> java-introcs SayNumber three-digit number

) [speaks "one hundred twenty six"]

~/cosl26/functions> java-introcs SayNumber typical case

i) [speaks "two thousand twenty four"]

~/cosl26/functions> java-introcs SayNumber 401000011 < no thousands unit

) [speaks "four hundred one million eleven"]




Function call graph

Function call graph. Graphical representation of function calls within a program.

f

.

sayPositivelnteger() j

A4

A4

\ 4

A4

(
L

sayThreeDigitInteger () j

\ 4

[ sayTwoDi1gitInteger()

~

J

A 4

>[ saySmallInteger() j

\ 4

:[ sayWord() }
> <

(>StdAudio.p1ay()J

|
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Procedural decomposition

Decomposition. Break up a complex programming problem into smaller functional parts.

Procedural decomposition. Implement each part as a separate function.

Ex. Say a positive integer.
* Play an audio file corresponding to a word. '
« Say a small integer.
« Say a two-digit integer.
« Say a three-digit integer.

Benefits. Supports the 3 Rs:
« Readability: understand and reason about code.
- Reliability: test, debug, and maintain code.

« Reusability: reuse and share code.

36



Summary

Functions. Provide a fundamental way to change flow of control of program.
« Java evaluates the arguments and passes by value to function.
* Function initializes parameter variables with corresponding argument values.

* Function computes a single return value and returns it to caller.

Applications.
« Scientists use mathematical functions to calculate formulas.
* Programmers use functions to build modular programs.

* You use functions for both.

This lecture. Write your own functions.

Next lecture. Build reusable libraries of functions.

Input X

function f(x)

v

output f(x)

side
effects

37
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