
COS 126: Atomic Nature of Matter

Use microscopy video to calculate Avogadro’s #.

Number of
molecules
in a mole.

7.1833
4.7932
2.1693
5.5287
5.4292
...

video frames find all beads

track beads in
consecutive framesdisplacements

Atomic Nature of Matter

Beads represented as "Blobs"

Our goal is to analyze a collection of microscopy
videos of beads suspended in water and find
Avogadro's #.

Beads represented as "Blobs"

Our goal is to analyze a collection of microscopy
videos of beads suspended in water and find
Avogadro's #.

● Luckily, the first step is done for us; we're given
each video as a sequence of images (.5s apart).

Beads represented as "Blobs"

Our goal is to analyze a collection of microscopy
videos of beads suspended in water and find
Avogadro's #.

● Luckily, the first step is done for us; we're given
each video as a sequence of images (.5s apart).

‣ So, our input isn't a video, it's n images (e.g., n = 200).

Beads represented as "Blobs"

Our goal is to find Avogadro's # by analyzing
microscopy videos of beads suspended in water
and

● We're given each video as a sequence of images
(.5 seconds apart).

‣ So, our input isn't a video, it's n images (e.g., n = 200).

● Our first step is to find all the beads in one (1)
image.

Beads represented as Blobs

Our goal is to find Avogadro's # by analyzing
microscopy videos of beads suspended in water
and

● We're given each video as a sequence of images
(.5 seconds apart).

‣ So, our input isn't a video, it's n images (e.g., n = 200).

● Our first step is to find all the beads in 1 image.

‣ To do that, we'll make an abstract data type called
Blob to store beads and a client called BeadFinder.

What is a Blob?

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

What is a Blob?

Q: How many blobs are there in this frame?

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

1

2

3

4

5

Q: How many blobs are there in this frame?

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

What is a Blob?

Q: How many blobs are there in this frame?

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

What is a Blob?

Q: How many blobs are there in this frame?

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

1

2

3

4
5

6

7

89

10

11

What is a Blob?

Q: Draw a frame with the max. # of Blobs.

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

What is a Blob?

A blob is a contiguous group of pixels, connected
in the four cardinal directions (i.e., not diagonally).

What is a Blob?

Q: Draw a frame with the max. # of Blobs.

Center of Mass

The center of mass of a Blob is a point (x, y) whose
x-coordinate is the avg. of all the x-coords and
whose y-coordinate is the avg. of all the y-coords.

Center of Mass

The center of mass of a Blob is a point (x, y) whose
x-coordinate is the avg. of all the x-coords and
whose y-coordinate is the avg. of all the y-coords.

Q: What is the center of mass of the top blob?

Center of Mass

The center of mass of a Blob is a point (x, y) whose
x-coordinate is the avg. of all the x-coords and
whose y-coordinate is the avg. of all the y-coords.

Q: What is the center of mass of the top blob?

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

Center of Mass

The center of mass of a Blob is a point (x, y) whose
x-coordinate is the avg. of all the x-coords and
whose y-coordinate is the avg. of all the y-coords.

Q: What is the center of mass of the top blob?

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

(6, ½)(6, ½)

Center of Mass

The center of mass of a Blob is a point (x, y) whose
x-coordinate is the avg. of all the x-coords and
whose y-coordinate is the avg. of all the y-coords.

Q: What is the center of mass of bottom blob?

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

Center of Mass

The center of mass of a Blob is a point (x, y) whose
x-coordinate is the avg. of all the x-coords and
whose y-coordinate is the avg. of all the y-coords.

Q: What is the center of mass of bottom blob?

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7
(9.6, 6.2)(9.6, 6.2)

Blob.java

● Implement:

‣ Blob()

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

‣ int mass()

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

‣ int mass()

‣ double distanceTo(Blob b)

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

‣ int mass()

‣ double distanceTo(Blob b)

‣ String toString()

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

‣ int mass()

‣ double distanceTo(Blob b)

‣ String toString()

‣ void main(String[] args)

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

‣ int mass()

‣ double distanceTo(Blob b)

‣ String toString()

‣ void main(String[] args)

● What instance variables do we need?

Blob.java

● Implement:

‣ Blob()

‣ void add(int i, int j)

‣ int mass()

‣ double distanceTo(Blob b)

‣ String toString()

‣ void main(String[] args)

● What instance variables do we need?

‣ Don't store all the coordinates!

Blob Tips

– In toString(), how do I format my output?

Blob Tips

– In toString(), how do I format my output?

– Use this code:

String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);

Blob Tips

– In toString(), how do I format my output?

– Use this code:

String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);

– In main(), how do I test my program?

Blob Tips

– In toString(), how do I format my output?

– Use this code:

String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);

– In main(), how do I test my program?

– Think of, say, 3 equidistant points on a line.

Blob Tips

– In toString(), how do I format my output?

– Use this code, available on the checklist:

String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);

– In main(), how do I test my program?

– Think of, say, three (3) equidistant points on a line.

– If you add() all three (3) points, which will be the
center?

Blob Tips

– In toString(), how do I format my output?

– Use this code, available on the checklist:

String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);

– In main(), how do I test my program?

– Think of, say, 3 equidistant points on a line.

– If you add() all 3 points, which will be the center?

– You can think of other tests, but don’t forget to test.

Blob Tips

– In toString(), how do I format my output?

– Use this code, available on the checklist:

String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);

– In main(), how do I test my program?

– Think of, say, 3 equidistant points on a line.

– If you add() all 3 points, which will be the center?

– You can think of other tests, but don’t forget to test.

– Also, don’t forget to effectively test all your methods.

What does BeadFinder do?

 /* finds all blobs in the specified picture using
 luminance threshold tau */
 public BeadFinder(Picture picture, double tau)

 /* returns all beads (blobs with >= min pixels) */
 public Blob[] getBeads(int min)

 /* test client description in spec */
 public static void main(String[] args)

BeadFinder: Original Image

BeadFinder: Applying Luminance
 Threshold tau

BeadFinder - Depth First Search
■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search
■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search

BeadFinder - Depth First Search
■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search

BeadFinder Challenges

■ Data structure for the collection of blobs
■ Store them any way you like
■ But be aware of memory use and timing

BeadFinder Challenges
■ Data structure for the collection of blobs

■ Store them any way you like
■ But be aware of memory use and timing

■ Array of blobs?
■ But how big should the array be?

■ Linked list of blobs?
■ Memory efficient, but harder to implement
■ Avoid traversing whole list to add a blob!

■ Anything else?
■ Submit your (extra) object classes

BeadTracker.java
■ Track beads between

successive images
■ Single main function

■ Take in a series of images
■ Output distance traversed by

all beads for each time-step
■ For each bead found at time t+1,

find closest bead at time t and
calculate distance

■ Not the other way around!
■ Don’t include if distance > 25

pixels (new bead)

BeadTracker Challenges

■ Reading multiple input files
■ java-introcs BeadTracker 25 180.0 25.0 run_1/*.jpg

■ Expands files in alphanumeric order
■ End up as args[0], args[1], …

■ Avoiding running out of memory
■ How?

■ Recompiling
■ Recompile if Blob or BeadFinder change

BeadTracker Challenges

■ Reading multiple input files
■ java-introcs BeadTracker 25 180.0 25.0 run_1/*.jpg

■ Expands files in alphabetical order
■ End up as args[0], args[1], …

■ Avoiding running out of memory
■ Do not open all picture files at same time
■ Only two need to be open at a time

■ Recompiling
■ Recompile if Blob or BeadFinder change

BeadTracker
Calculates the displacement of each bead
between consecutive frames.

BeadTracker
Calculates the displacement of each bead
between consecutive frames.

– Instead of tracking one bead's journey through
all the images, let's look at all the consecutive
frames and for each bead in the frame at time
t+1, find the nearest bead in frame at time t.

BeadTracker
Calculates the displacement of each bead
between consecutive frames.

– Instead of tracking one bead's journey through
all the images, let's look at all the consecutive
frames and for each bead in the frame at time
t+1, find the nearest bead in frame at time t.

– If it's within a maximal distance (i.e., <= delta),
we'll assume it's the same bead. Otherwise, we
assume that bead went out of focus in the
previous frame.

BeadTracker

An example:

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 1, find
closest in frame 0. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 1, find
closest in frame 0. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 1, find
closest in frame 0. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 1, find
closest in frame 0. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 2, find
closest in frame 1. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 2, find
closest in frame 1. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 2, find
closest in frame 1. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 2, find
closest in frame 1. print if <= delta

BeadTracker

...

frame 0 frame 1 frame 2 frame n-1

for all beads in frame 2, find
closest in frame 1. print if <= delta

Avogadro.java

Use displacements to calculate Avogadro's #.

Avogadro.java

Use displacements to calculate Avogadro's #.

– Lots of formulas, pretty straightforward.

Avogadro.java

Use displacements to calculate Avogadro's #.

– Lots of formulas, pretty straightforward.

– Be careful with your units!

Avogadro.java

Use displacements to calculate Avogadro's #.

– Lots of formulas, pretty straightforward.

– Be careful with your units!

– Converting from pixels to meters can be tricky.

Avogadro.java

Use displacements to calculate Avogadro's #.

– Lots of formulas, pretty straightforward.

– Be careful with your units!

– Converting from pixels to meters can be tricky.

– Can test without the other parts working.

Avogadro.java

Use displacements to calculate Avogadro's #.

– Lots of formulas, pretty straightforward.

– Be careful with your units!

– Converting from pixels to meters can be tricky.

– Can test without the other parts working.

– We provide sample input files.

Avogadro.java

Use displacements to calculate Avogadro's #.

– Lots of formulas, pretty straightforward.

– Be careful with your units!

– Converting from pixels to meters can be tricky.

– Can test without the other parts working.

– We provide sample input files.

– Can work on it while waiting for help.

General Tips

– When working on BeadTracker, you may find a
bug in BeadFinder. Don't forget to recompile!

General Tips

– When working on BeadTracker, you may find a
bug in BeadFinder. Don't forget to recompile!

– Make sure all your corner cases are right.

General Tips

– When working on BeadTracker, you may find a
bug in BeadFinder. Don't forget to recompile!

– Make sure all your corner cases are right.

– StackOverflowError = DFS base case issues.

General Tips

– When working on BeadTracker, you may find a
bug in BeadFinder. Don't forget to recompile!

– Make sure all your corner cases are right.

– StackOverflowError = DFS base case issues.

– Don't forget the timing analysis in the readme.

General Tips

– When working on BeadTracker, you may find a
bug in BeadFinder. Don't forget to recompile!

– Make sure all your corner cases are right.

– StackOverflowError = DFS base case issues.

– Don't forget the timing analysis in the readme.

– BeadTracker is time sink, so analyze that.

General Tips

– When working on BeadTracker, you may find a
bug in BeadFinder. Don't forget to recompile!

– Make sure all your corner cases are right.

– StackOverflowError = DFS base case issues.

– Don't forget the timing analysis in the readme.

– BeadTracker is time sink, so analyze that.

– How can you run 100 frames?

Amedeo Avogadro

Conclusion: Final Tips

■ Avoiding subtle bugs in BeadFinder
■ Double check what happens at corner cases

(e.g. at boundary pixels, or when luminance
== tau, or mass == cutoff)

■ Common errors in BeadFinder
■ NullPointerException

■ StackOverflowError (e.g., if no base case)
■ No output (need to add print statements)

■ Look at Possible Progress Steps
■ Click ▶ to expand!

Conclusion: Final Tips
■ Avoid magic numbers

■ Define named constants

■ No Checkstyle or other errors/warnings

■ Testing with a main()

■ There is a limit of twenty (20) times that you may

click the Check Submitted Files to receive feedback

from the TigerFile auto-grader

■ So, test locally! I.e., on your laptop before using

TigerFile to run test cases

Conclusion: Final Tips
■ Timing analysis - doubling method!
■ Wild cards

■ The frames use the following naming convention:
■ frame00000.jpg, frame00001.jpg …

frame00198.jpg, frame00199.jpg

■ On command line:
■ 10 frames? run_1/frame0000*.jpg
■ 20 frames? run_1/frame000[0-1]*.jpg
■ 40 frames? run_1/frame000[0-3]*.jpg
■ 100 frames? run_1/frame000*.jpg
■ 200 frames? run_1/frame*.jpg
■ 400 frames? run_1/frame*.jpg run_1/frame*.jpg

Thank you

References and Credits

Primary Color slides prepared by Prof. Ibrahim Albluwi

Black and Orange motif slides prepared by Dr. Dan Leyzberg

https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Robert_Brown_(botanist).jpg/220px-Robert_Brow
n_(botanist).jpg

https://cdn.miniphysics.com/wp-content/uploads/2011/01/brownianmotion.gif

https://upload.wikimedia.org/wikipedia/commons/d/d3/Albert_Einstein_Head.jpg

https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/File:Jean_Perrin_1926.jpg

Amedeo Avogadro

Good luck on your
project

