Princeton COS126 Introduction to machine learning #### ChatGPT DALLE-2 AlphaFold #### ChatGPT Disney Research AlphaFold 3 ### Roadmap - What is machine learning? - Machine learning paradigms - Supervised learning - Unsupervised learning - Reinforcement learning - Perceptron - Example: Golden retriever vs. Doberman - Perceptron model - Training via update rule - Testing - Multi-layer Perceptron (MLP) - Multi-class Perceptron ### ML data ⇔ related fields | Player | Minutes | Points | Rebounds | Assists | |--------|---------|--------|----------|---------| | Α | 41 | 20 | 6 | 5 | | В | 30 | 29 | 7 | 6 | | С | 22 | 7 | 7 | 2 | | D | 26 | 3 | 3 | 9 | Tabular ### **Machine learning** Real manipulation **Robotics** Visual ### **Computer vision** Audio **Audio processing** Briefly explain chatGPT using a metaphor that would resonate with an audience of stockmarket investors and avoiding Al jargon. **®** One way to explain chatGPT to stockmarket investors is to compare it to a financial advisor who uses past performance data and market trends to make predictions about future investments. Just like a skilled financial advisor, chatGPT uses large amounts of training data to generate intelligent and informed responses to questions, providing valuable insights and suggestions to users. ### Text # Natural language processing (NLP) ### What is machine learning? ### Machine learning (ML): Algorithms that improve automatically using data or repeated experience. #### Notes: - This was **not** true of the programs that you written so far in COS126 (e.g. your programs = explicit instructions for the computer). - There are many non-ML algorithms in computer vision, NLP, robotics, etc. # Machine learning paradigms - 1. Supervised learning: learn to **predict** an output from an input. - 2. Unsupervised learning: learn patterns from data. - 3. Reinforcement learning: learn by **interacting** with an environment (i.e. **trial-and-error**). Given (input, output) pairs, **predict** an output from its input. ``` input₁ → output₁ input₂ → output₂ input₃ → output₃ ``` ### Medicine - Input: medical information (i.e. age, body mass index [BMI], blood sugar levels, etc.) - Output: blood pressure (in mm Hg) ### Computer vision: segmentation - Input: an image - Output: segmentation map of objects - Application: self-driving cars Person Bicycle Background Pascal VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ https://github.com/meetps/pytorch-semseg #### **NLP: Machine translation** - Input: a sentence in English - Output: its translation in Spanish - Application: Google Translate Gender Bias in Machine Translation: https://towardsdatascience.com/gender-bias-in-machine-translation-819ddce2c452 "That river is dangerous to swim in." \rightarrow "Es peligroso nadar en ese río." "The baby is playing with some toys." \rightarrow "El bebé juega con algunos juguetes." Anki Tab-Delimited Bilingual Sentence Pairs https://www.manythings.org/anki/ ### Other applications - Spam filtering: email text → {spam, not spam} - Speech recognition: audio clip → text transcription - Medical imaging: CT scan of COVID patients → severity of COVID symptoms . . . If you can create a dataset of (input, output) pairs, you can use supervised learning. Learn patterns from unlabelled data (i.e. no input-output pairs). ### Examples: - Clustering - Dimensionality reduction - Anomaly detection - Generative modeling - • ### Clustering - Goal: Given a data point, categorize it into one of k clusters. - Unlike supervised learning, there are no output labels! i.e. no (data point, cluster) pairs - Application in retail marketing: What kinds of people have similar shopping habits? ### **Dimensionality reduction** - Goal: Reduce number of variables while preserving patterns (e.g. distances between points). - Uses: - Compression - Visualization - ... PCA example of colleges dataset ### **Anomaly detection** - Goal: Identify anomalies (outliers) - Applications: - Credit card fraud - Medical diagnosis - ... #### **Generative model** - Goal: Create synthetic examples that look realistic. - Applications: - Computer vision: Given a dataset portraits, generate realistic looking faces. - NLP: Given Shakespeare's sonnets, generate a realistic sounding, Shakespearean sonnet. Generated by StyleGAN (Karras, et al., CVPR 2019) "am of my faults thy sweet self dost deceive: they look into the beauty of thy deeds nativity, once in the chronicle of wasted time not from the thing they see" Generated by Markov Chains https://rpubs.com/malcolmbarrett/shakespeare Learn by interacting (i.e. trial-and-error) with an environment. - An agent interacts with an environment by performing actions and then gathers observations (and sometimes rewards) that occur in response to its actions - Interactions generate data (i.e. no fixed dataset). - Goal: Learn agent to maximize reward. ### **CartPole** - Goal: Balance a pole on a cart by moving it left and right. - Actions: {left, right} - Reward: +1, for each step the pole is upright. - Learn over many attempts (i.e. episodes). https://gymnasium.farama.org/ environments/classic control/cart pole/ #### **CartPole** - Goal: Balance a pole on a cart by moving it left and right. - Actions: {left, right} - Reward: +1, for each step the pole is upright. - Learn over many attempts (i.e. episodes). https://gymnasium.farama.org/ environments/classic control/cart pole/ ### **Application: Games** - Atari (2015): DeepMind - Go (2016): AlphaGo from DeepMind - Poker (2017, 2019): Libratus and Pluribus from CMU - Diplomacy (2022): Cicero from Meta Al to BUL. AUSTRIA: Hi Italy! Care to work together on this one? If you support me into BOH I think we'd both be able to grow quickly. ITALY: Could you support me into BUL in return? AUSTRIA: Sure thing! I have ordered SER to support GRE ### **Application: Robotics** Solving a Rubik's cube OpenAl's ADR (2019) ### **Application: Robotics** - Solving a Rubik's cube - Manipulating objects (e.g. grasp, throw, etc.) - Laundry folding Berkeley's BRETT (2015) OpenAl's ADR (2019) Princeton+Google's TossingBot (2019) ### Poll Predict the outcome of the next U.S. presidential election based on polling data and data from prior presidential elections. What kind of machine learning problem is this? - a. Supervised learning - b. Unsupervised learning - c. Reinforcement learning https://commons.wikimedia.org/wiki/File:2020 United States presidential election results map by county.svg ### Poll Predict if a patient's lung scan is abnormal based on a huge dataset of lung scans. What kind of machine learning problem is this? - a. Supervised learning - b. Unsupervised learning - c. Reinforcement learning https://www.pexels.com/photo/doctor-looking-at-lung-scans-she-is-holding-4225926/ ### Machine learning paradigms - 1. Supervised learning: learn to **predict** an output from an input. - 2. Unsupervised learning: learn patterns from data. - 3. Reinforcement learning: learn by **interacting** with an environment (i.e. **trial-and-error**). ### Other paradigms: - Self-supervised learning - Semi-supervised learning - Transfer learning - Online learning # Ingredients of ML - 1. **Data.** Can be labelled, unlabelled, or from experience. - 2. Model. A model maps from datapoint to a desired answer or output. - 3. Model parameters. Internal parameters of model that are learnable. - 4. **Training.** Given datapoints, find good model parameters. - 5. **Testing.** Evaluate the performance of learned model ... on new, previously unseen data (i.e. test set). # Perceptron Given (input, output) pairs, **predict** an output from its input. ``` input₁ → output₁ input₂ → output₂ input₃ → output₃ ``` ### Basic problems described by output type: - Regression: Predict a continuous value (e.g. number). - Classification: Predict a discrete category (i.e. classes). - Binary classification: Predict one of two classes. - Multi-class classification: Predict one of k classes (k > 2). # Binary classification Data is nearly linearly separable. ## Binary classification ### **Predict dog species** - Input (centered*) - Height - Weight - Output - Golden Retriever: +1 - Doberman Pinscher: —1 - = "Golden Retriever detector" ^{*} Input centered to have mean = 0 and standard deviation = 1. ## True/False Positive/Negative Ways to get the answer right or wrong: - True Positive - False Positive - True Negative - False Negative ### Perceptron Algorithm that takes several inputs and produces a single, binary output. - Inputs: x_0, x_1 (i.e. height, weight) - Compute weighted sum $S = w_0 x_0 + w_1 x_1$ - Output sign(S) = + 1 if S > 0 $= -1 \text{ if } S \leq 0$ ### Poll • Inputs: $$x_0 = -0.5$$, $x_1 = 2$ • Weights: $$w_0 = -2$$, $w_1 = -0.1$ - Compute weighted sum $S = w_0 x_0 + w_1 x_1$ - Output sign(S) = + 1 if S > 0 $= -1 \text{ if } S \leq 0$ ### What is the weighted sum S? Golden retriever: +1, Doberman -1 ### Perceptron - Inputs: $x_0 = -0.5$, $x_1 = 2$ - Weights: $w_0 = -2$, $w_1 = -0.1$ - Compute weighted sum $S = w_0 x_0 + w_1 x_1$ - Output sign(S) = + 1 if S > 0 $= -1 \text{ if } S \leq 0$ $$S = w_0 x_0 + w_1 x_1$$ $$= (-2) \cdot (-0.5) + (-0.1) \cdot 2$$ $$= 1 + (-0.2) = 0.8$$ $$sign(S) = sign(0.8) = +1$$ Golden retriever: +1, Doberman -1 # Perceptron: Geometric Perspective - Inputs: $x_0 = -0.5$, $x_1 = 2$ - Weights: $w_0 = -2$, $w_1 = -0.1$ - Compute weighted sum $S = w_0 x_0 + w_1 x_1 = 0.8$ - Output sign(S) = +1 - Weight vector $\overrightarrow{\mathbf{w}}$ is **perpendicular** to linear decision boundary. - Datapoints on the "side" with weight vector $\overrightarrow{\mathbf{w}}$ are predicted as +1; those on the "opposite site" as -1. Golden retriever: +1, Doberman -1 # Ingredients of ML - 1. **Data.** Height and weight (x_0, x_1) and label $y \in \{+1, -1\}$ for Golden Retriever or Doberman. - 2. **Model.** Perceptron model. - 3. Model parameters. Weight vector $\overrightarrow{\mathbf{w}} = (w_0, w_1)$. - 4. Training. Given datapoints, find good model parameters. - 5. **Testing.** Evaluate the performance of learned model on new, previously unseen data (i.e. test set). # Perceptron: Training Initialize all weights to 0. For each training example with label $y \in \{+1, -1\}$: - Compute predicted output $\hat{y} = \text{sign}(S)$ - Update weights if incorrect (i.e. $\hat{y} \neq y$) Golden retriever: +1, Doberman -1 For each training example with label $y \in \{+1, -1\}$: - Compute predicted output $S = w_0 x_0 + w_1 x_1$ $\hat{y} = \text{sign}(S) = +1 \text{ if } S > 0$ = -1 if S < 0 - If correct $(y = \hat{y})$, do nothing. - If false positive $(y = -1, \hat{y} = +1)$: $w'_i = w_i x_i$ - If false negative $(y = +1, \hat{y} = -1)$: $w'_i = w_i + x_i$ Golden retriever: +1, Doberman -1 ## Poll • Inputs: $$x_0 = 0.3$$, $x_1 = 0.6$, $y = +1$ • Weights: $$w_0 = -2$$, $w_1 = -0.1$ Compute predicted output $$S = w_0 x_0 + w_1 x_1$$ $\hat{y} = \text{sign}(S) = +1 \text{ if } S > 0$ $= -1 \text{ if } S \leq 0$ #### Which scenario is true? A. Correct prediction $(y = \hat{y})$ B. False positive $(y = -1, \hat{y} = +1)$ C. False negative $(y = +1, \hat{y} = -1)$ Golden retriever: +1, Doberman -1 - Inputs: $x_0 = 0.3$, $x_1 = 0.6$, y = +1 - Weights: $w_0 = -2$, $w_1 = -0.1$ $$S = w_0 x_0 + w_1 x_1 = -0.66$$ $$\hat{y} = sign(S) = -1$$ ### **Update rules:** - If correct $(y = \hat{y})$, do nothing. - If false positive $(y = -1, \hat{y} = +1)$: $w'_j = w_j x_j$ - If false negative $(y = +1, \hat{y} = -1)$: $w'_i = w_i + x_i$ - Inputs: $x_0 = 0.3$, $x_1 = 0.6$, y = +1 - Weights: $w_0 = -2$, $w_1 = -0.1$ $$S = w_0 x_0 + w_1 x_1 = -0.66$$ $$\hat{y} = sign(S) = -1$$ ### **Update rules:** - If correct $(y = \hat{y})$, do nothing. - If false positive $(y = -1, \hat{y} = +1)$: $w'_j = w_j x_j$ - If false negative (y = +1, $\hat{y} = -1$): $w'_i = w_i + x_i$ - Inputs: $x_0 = 0.3$, $x_1 = 0.6$, y = +1 - Weights: $w_0 = -2$, $w_1 = -0.1$ $$S = w_0 x_0 + w_1 x_1 = -0.66$$ $$\hat{y} = sign(S) = -1$$ If false negative (y = +1, $\hat{y} = -1$): $w'_j = w_j + x_j$ $$w'_0 = w_0 + x_0 = -2 + 0.3 = -1.7$$ $w'_1 = w_1 + x_1 = -0.1 + 0.6 = 0.5$ - Inputs: $x_0 = 0.3$, $x_1 = 0.6$, y = +1 - Old weights: $w_0 = -2$, $w_1 = -0.1$ - Inputs: $x_0 = 0.3$, $x_1 = 0.6$, y = +1 - Old weights: $w_0 = -2$, $w_1 = -0.1$ - New weights: $w'_0 = -1.7$, $w'_1 = 0.5$ - Inputs: $x_0 = 0.3$, $x_1 = 0.6$, y = +1 - New weights: $w_0 = -1.7$, $w_1 = 0.5$ $$S = w_0 x_0 + w_1 x_1 = -0.21$$ $$\hat{y} = sign(S) = -1$$ Still false negative, but closer to boundary. **Intuition:** Update rule moves decision boundary to be better for the current training example. # Perceptron: Testing Evaluate performance using an evaluation metric on an unseen set of examples (e.g. test examples). ### Poll Evaluate performance using an evaluation metric on an unseen set of examples (e.g. test examples). Consider the following unseen examples (5 Golden Retrievers, 5 Dobermans) and the given Perceptron model. What is the error rate on test set? # Ingredients of ML - 1. **Data.** Height and weight (x_0, x_1) and label $y \in \{+1, -1\}$ for Golden Retriever or Doberman. - 2. **Model.** Perceptron model. - 3. **Model parameters**. Weight vector $\overrightarrow{\mathbf{w}} = (w_0, w_1)$. - 4. Training. Use the Perceptron update rule to train on training examples. - 5. **Testing.** Compute error rate on new, previously unseen data (i.e. test set). # Multi-layer Perceptron # Biological Neuron #### **Dendrites** Receive information from other neurons ### **Action potential** Neuron "fires" based on received information ### Synaptic terminals Relay "firing" to other neurons Neuron firing (or not) is a binary output. # Biological Neuron # Perceptron Takes several inputs and produces a single binary output. # Perceptron Takes several inputs and produces a single binary output. # Multi-Layer Perceptron (MLP) Composed of multiple layers of perceptron neurons, where each neuron is connected to all neurons in the next layer (i.e. fully-connected). MLPs are an example of a deep neural network. Deep Learning Refers to ML models that use deep neural networks. Popular neural network architectures: - Recurrent neural networks - Convolutional neural networks - Transformers # Multi-class Perceptron ## Multi-class Classification Predict one of \mathbf{k} classes (k > 2). Suppose we have $\mathbf{k} = \mathbf{3}$ dog species we are trying to classify. Train $\mathbf{k} = \mathbf{3}$ binary Perceptron models and compute $\mathbf{3}$ weighted sums: S_1, S_2, S_3 . Final prediction is the class with the largest weighted sum. # Multi-class Classification: Geometric Perspective Predict one of \mathbf{k} classes (k > 2). Suppose we have $\mathbf{k} = \mathbf{3}$ dog species we are trying to classify. Train $\mathbf{k} = \mathbf{3}$ binary Perceptron models and compute $\mathbf{3}$ weighted sums: S_1, S_2, S_3 . Final prediction is the class with the largest weighted sum. # Machine learning models ML model: an algorithm used to perform a task. #### Supervised ML models: - Linear models (e.g. perceptron) - Deep neural networks* (e.g. multi-layer perceptron) - Decision trees - Ensembles (e.g. random forests) - • *also for unsupervised and reinforcement learning # Readings #### Required: Etienne Bernard, Wolfram. Introduction to Machine Learning: Machine Learning Paradigms. https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/ Lecture contents based in part on the following: - COS324 instructors (especially Ruth Fong) and lectures. - Etienne Bernard, Wolfram. Introduction to Machine Learning: Machine Learning Paradigms. https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/ - Shree Nayar. Perceptron | Neural Networks. https://youtu.be/OFbnpY k7js? si=wrWOvNXE3UVCq-7Z | Media | Source | License | |-------------------------|-------------------|----------------| | AlphaFold | AlphaFold | CC BY 4.0 | | ChatGPT screenshot | Mashable | | | Cicero | Science | | | DALL-E 2 | Open Al | | | Dancing Robot | Disney Research | | | Basketball Tabular Data | Statology | | | Object detection NYC | Ilija Mihajlovic | | | Chat GPT market | MarketWatch | | | Robotic arms | Facebook Research | | | Audio wave | <u>COS 126</u> | | | Blood pressure | Wikimedia | <u>CC0 1.0</u> | | Object segmentation | PASCAL VOC | | | Segmentation for cars | pytorch-semseg | | | Source | License | |-------------------|--| | Analytics Drift | | | Google Developers | | | Wolfram | | | Ruth Fong | | | Wolfram | | | arXiv | | | Wolfram | | | Gymnasium | | | Andreas De Neve | | | OpenAl Gym | | | New Yorker | | | <u>OpenAl</u> | | | Google Research | | | | Analytics Drift Google Developers Wolfram Ruth Fong Wolfram arXiv Wolfram Gymnasium Andreas De Neve OpenAl Gym New Yorker OpenAl | | Media | Source | License | |-----------------------|--------------|--------------| | Laundry folding robot | NPR | | | US election map | Wikimedia | CC0 1.0 | | Doctor lung scan | Pexels | | | Golden retriever | Emojis.sh | | | Doberman | Emojis.sh | | | Neuron | Wikimedia | CC BY-SA 4.0 | | Linear regression | scikit-learn | | | Deep neural network | <u>IBM</u> | | | Decision tree | Kaggle | | | | | | | | | |