
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/13/25 12:55  PM

6. TOY MACHINE II

‣ conditionals and loops
‣ input and output
‣ arrays
‣ von Neumann architecture
‣ TOY emulator

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Machine language programming in TOY

TOY machine.

・Arithmetic logic unit (ALU).

・Memory and registers.

・Program counter (PC) and instruction register (IR).

・Lights and switches.
 
 
TOY programming.

・Move data between memory and registers.

・Arithmetic/logic operations.

・Conditionals and loops.

・Arrays.

・Standard input and output.

・Functions.

・Linked structures.

2

last lecture/precept

this lecture/precept

see textbook

Review: your first TOY program

Add two integers.

・Load operands from memory into two registers.

・Add the two registers.

・Store the result in memory.

3

 ⋮ ⋮

10: 8A15 R[A] = M[15]

11: 8B16 R[B] = M[16]

12: 1CAB R[C] = R[A] + R[B]

13: 9C17 M[17] = R[C]

14: 0000 halt

15: 0008 input 1

16: 0005 input 2

17: 0000 output

 ⋮ ⋮

 ⋮ ⋮

R[A]

R[B]

R[C]

 ⋮ ⋮

 MEMORY PCREGISTERS

0 01 11 21 31 41 0

0 0 0 8

0 0 0 5

0 0 0 D

000D0000

0 0 0 0

0 0 0 0

0 0 0 0

6. TOY MACHINE II

‣ conditionals and loops
‣ input and output
‣ arrays
‣ von Neumann architecture
‣ TOY emulatorR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Conditionals and loops

To control the flow of instruction execution.

・Test a register’s value.

・Change the PC, depending on the value.  

 
Ex 1. Typical if statement.

5

opcode instruction pseudocode

C branch if zero if (R[d] == 0) PC = addr

D branch if positive if (R[d] > 0) PC = addr

14: ...

15: DA17 if (R[A] > 0) goto 17

16: 2A0A R[A] = -R[A]

17: ...

skips line 16 if R[A] > 0

replace R[A] with absolute value of R[A]

if (a <= 0) {

 a = -a;

}

replace a with |a|

Conditionals and loops

To control the flow of instruction execution

・Test a register’s value.

・Change the PC, depending on the value.  

 
Ex 2. Typical while loop.

6

opcode instruction pseudocode

C branch if zero if (R[d] == 0) PC = addr

D branch if positive if (R[d] > 0) PC = addr

12: ...

13: CA18 if (R[A] == 0) goto 18

14: ...

15: 7101 R[1] = 1

16: 2AA1 R[A] = R[A] - 1

17: C013 goto 13

18: ...

skip lines 14 to 17
if R[A] is 0

goto line 13
(R[0] is always 0)

line 14 is repeated R[A] times
(assuming R[A] is non-negative)

load address

repeat a times
(assuming a is non-negative)

while (a != 0) {

 ...

 a--;

}

Multiplication

Goal. Compute product of two positive integers: .
Algorithm. Initialize c = 0; then, add b to c, a times.

c = a × b

7

10: 8A1A R[A] = M[1A]

11: 8B1B R[B] = M[1B]

12: 7C00 R[C] = 0

13: CA18 if (R[A] == 0) goto 18

14: 1CCB R[C] = R[C] + R[B]

15: 7101 R[1] = 1

16: 2AA1 R[A] = R[A] - 1

17: C013 goto 13

18: 9C1A M[1C] = R[C]

19: 0000 halt

1A: 0007 input a

1B: 0009 input b

1C: 0000 output c = a * b

input and output

multiplication: c = a × b
(via repeated addition)

int c = 0;

while (a != 0) {

 c = c + b;

 a--;

}

opcode instruction pseudocode

C branch if zero if (R[d] == 0) PC = addr

D branch if positive if (R[d] > 0) PC = addr

loop template
from previous slide

TOY II: quiz 1

Upon termination, which value is stored in R[A] ?

A. 0000

B. 7FFF

C. FFFF

D. Infinite loop

8

10: 7A00 R[A] = 0

11: 7101 R[1] = 1

12: 1AA1 R[A] = R[A] + 1

13: CO12 goto 12

14: 0000 halt

R[1] is always 1

R[0] is always 0

TOY II: quiz 2

Upon termination, which value is stored in R[B] ?

A. 0000

B. 0010

C. 0016

D. 1020

E. 8000

9

10: 7101 R[1] = 1

11: 7A04 R[A] = 4

12: 7B01 R[B] = 1

13: 2AA1 R[A] = R[A] - 1

14: 1BBB R[B] = R[B] + R[B]

15: DA13 if (R[A] > 0) goto 13

16: 0000 halt

24 = 1610

 = 001016

R[1] R[A] R[B]

1 4 0001

1 3 0002

1 2 0004

1 1 0008

1 0 0010

6. TOY MACHINE II

‣ conditionals and loops
‣ input and output
‣ arrays
‣ von Neumann architecture
‣ TOY emulatorR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Standard input and output

An immediate problem. Can’t address real-world problems with just switches and lights for I/O.

S T D I N STDOUT

bolt I/O devices
to the side of machine

11

Standard input and output

Punched paper tape.

・Encode each 16-bit word in two 8-bit rows.

・To write a word, punch a hole for each 1.

・To read a word, shine a light behind the tape and sense the holes.
 
TOY mechanism.

・Connect hardware to memory address FF.

・To write the contents of a register to stdout, store to M[FF].

・To read from stdin into a register, load from M[FF].

12

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

16-bit word

two 8-bit rows

○○○○・○○○○
○○○○・○○○ ●
○○○○・○○○○
○○○○・○○○ ●
○○○○・○○○○
○○○○・○○ ● ○
○○○○・○○○○
○○○○・○○ ● ●
○○○○・○○○○
○○○○・○ ● ○ ●
○○○○・○○○○
○○○○・ ● ○○○
○○○○・○○○○
○○○○・ ● ● ○ ●
○○○○・○○○○
○○○ ● ・○ ● ○ ●
○○○○・○○○○
○○ ● ○・○○ ● ○
○○○○・○○○○
○○ ● ● ・○ ● ● ●
○○○○・○○○○
○ ● ○ ● ・ ● ○○ ●
○○○○・○○○○
● ● ● ○・ ● ○○ ●
○○○○・○○○○

P U N C H C A R D

Standard input and output: absolute value

Goal. Read integers from standard input (stop on 0000);  
 write absolute value to standard output.

13

while (true) {

 a = StdIn.readInt();

 if (a == 0) break;

 if (a <= 0) a = -a;

 StdOut.println(a);

}

opcode operation pseudocode

8 load R[d] = M[addr]

9 store M[addr] = R[d]

10: 8AFF Read R[A] from stdin

11: CA16 if (R[A] == 0) goto 16

12: DA14 if (R[A] > 0) goto 14

13: 2A0A R[A] = -R[A]

14: 9AFF write R[A] to stdout

15: C010 goto 10

16: 0000 halt

read from standard input
(since address is FF)

write to standard output
(since address is FF)

Goal. Read integers from standard input (stop on 0000);  
 write absolute value to standard output.

Standard input and output trace

14

○○○○・○○○○ 1○○○○・○○○ ●
○○○○・○○○○ 2○○○○・○○ ● ○
○○○○・○○○○ 6○○○○・○ ● ● ○
● ● ● ● ・ ● ● ● ● –1● ● ● ● ・ ● ● ● ●
○○○○・○○○○ 0○○○○・○○○○
○○○○・○○○○

S T D I N

10: 8AFF Read R[A] from stdin

11: CA16 if (R[A] == 0) goto 16

12: DA14 if (R[A] > 0) goto 14

13: 2A0A R[A] = -R[A]

14: 9AFF write R[A] to stdout

15: C010 goto 10

16: 0000 halt

○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○

○○○○・○○○○ 1○○○○・○○○ ●
○○○○・○○○○ 2○○○○・○○ ● ○
○○○○・○○○○ 6○○○○・○ ● ● ○
○○○○・○○○○ 1○○○○・○○○ ●
○○○○・○○○○
○○○○・○○○○
○○○○・○○○○

S T D O U T

6. TOY MACHINE II

‣ conditionals and loops
‣ input and output
‣ arrays
‣ von Neumann architecture
‣ TOY emulatorR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

TOY II: quiz 3

Upon termination, which value is stored in R[C] ?

A. 000A

B. 0011

C. 8B12

D. AC0A

16

10: 7A11 R[A] = 11

11: 8B12 R[B] = M[12]

12: AC0A R[C] = M[R[A]]

13: 0000 halt

load address

load

load indirect

opcode operation pseudocode

7 load address R[d] = addr

8 load R[d] = M[addr]

A load indirect R[d] = M[R[t]]

 ⋮ ⋮

R[A]

R[B]

R[C]

 ⋮ ⋮

PCREGISTERS

0 01 11 21 31 0

0 0 1 10 0 0 0

A C 0 A0 0 0 0

8 B 1 20 0 0 0

Arrays

To implement an array:

・Keep array elements contiguous in memory, say, starting at 80.

・Access array element i at M[80 + i]. using load/store indirect.
 
Goal. Print elements in an array of length n > 0 to standard output.

17

10: 7A80 R[A] = 80

11: 7B09 R[B] = 9

12: 7101 R[1] = 1

13: AC0A R[C] = M[R[A]]

14: 9CFF write R[C]

15: 1AA1 R[A] = R[A] + 1

16: 2BB1 R[B] = R[B] - 1

17: CB13 if (R[B] > 0) goto 13

18: 0000 halt

load next array element into R[C]

80: C0DE

81: CAFE

82: ABBA

83: 8BAD

84: F00D

85: FACE

86: 1377

87: D1CE

88: C1A0

"array" of length 9

address of next element in array

opcode operation pseudocode

7 load address R[d] = addr

A load indirect R[d] = M[R[t]]

B store indirect M[R[t]] = R[d]

 array starts at R[A] = 80
and has length R[B] = 9

Suppose that we execute the same program, but initialize R[A] to 10. What is the result?

A. Prints 0010, 0011, 0012, …, 0017, 0018.

B. Prints 7A10, 7B09, 7101, …, CB13, 0000.

C. Crashes when R[A] is 0013.

D. Infinite loop.

TOY II: quiz 4

18

treats the TOY program as data
(and prints the program)

10: 7A10 R[A] = 10

11: 7B09 R[B] = 9

12: 7101 R[1] = 1

13: AC0A R[C] = M[R[A]]

14: 9CFF write R[C]

15: 1AA1 R[A] = R[A] + 1

16: 2BB1 R[B] = R[B] - 1

17: CB13 if (R[B] > 0) goto 13

18: 0000 halt

 array now starts at
R[A] = 10

Pointers

19

https://imgs.xkcd.com/comics/pointers.png

https://imgs.xkcd.com/comics/pointers.png

Indirection

Direct addressing. Specify memory address to access.
Indirect addressing. Specify register containing memory address to access.
 
Pointer. Variable/register that stores a memory address.
 
Indirection. Manipulating a value through its memory address.

・TOY arrays.

・Java references.

・C pointers.

・…

20

https://geekandpoke.typepad.com/geekandpoke/2012/03/simply-explained.html

6. TOY MACHINE II

‣ conditionals and loops
‣ input and output
‣ arrays
‣ von Neumann architecture
‣ TOY emulatorR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

TOY vs. your laptop

Two different computing machines.

・Both implement basic data types, conditionals, loops, and other low-level constructs.

・Both can have arrays, functions, linked structures, and other high-level constructs.

・Both have unbounded input and output streams.
 
 
 
 
 
 
 
A few key differences.

・Performance: 1Hz vs. 3.5 GHz.

・Memory: 512 bytes vs. 32GB.

・Input/output devices: display, keyboard, trackpad, speakers, webcam, …

22

An early computer

Electronic Numerical Integrator and Calculator (ENIAC).

・First widely-known general-purpose electronic computer.

・“Programmable”, but no memory.

・Programming: change switches and cable connections.

・Data: enter numbers using punch cards.

23
two programmers “programming” the ENIAC (1946)

facts and figures

30 tons

30 × 50 × 8.5 feet

17,468 vacuum tubes

300 multiply/sec

John W. MauchlyJ. Presper Eckert

one bit
(vacuum tube)

Von Neumann architecture

First Draft of a Report on the EDVAC (1945).

・Brilliant summation of a stored-program machine.

・Written by John von Neumann on a train.

・Based upon EDVAC design of Eckert–Mauchly; influenced by Turing.
 
 
 
 
 
 
 
Keys elements.

・Data and instructions encoded in binary.

・Store both data and instructions in same computer memory.

・ALU, control, memory, registers, and input/output.

24

OutputInput

Memory

CPU

ALU

Control

What does the following program print to standard output?

A. 0000

B. 0088

C. 0088, 0088, 0088, 0088, …

D. Nothing.

 
 
 
Profound implication. Self-modifying code.

10: 7202 R[2] = 2

11: 7A88 R[A] = 88

12: AB16 R[B] = M[16]

13: 2BB1 R[B] = R[B] - 2

14: BB16 M[16] = R[B]

15: 9AFF write R[A] to stdout

16: CO15 goto 15

17: 0000 halt

TOY II: quiz 5

25

program overwrites itself
(storing C015 in M[16])

R[B] stores C017

R[B] stores C015

R[2] R[A] R[B]

2 – –

2 0088 –

2 0088 C017

2 0088 C015

10: 7202 R[2] = 2

11: 7A88 R[A] = 88

12: AB16 R[B] = M[16]

13: 2BB1 R[B] = R[B] - 2

14: BB16 M[16] = R[B]

15: 9AFF write R[A] to stdout

16: CO17 goto 17

17: 0000 halt

Implications

Stored-program (von Neumann) architecture is the basis of nearly all computers since the 1950s.
 
Practical implications.

・Programming: develop programs without rewiring.

・Download apps: load programs, not just data, into memory.

・Compilers: write programs that take programs as input (and produce programs as output).

・Code-injection attacks: trick program into treating input data as code.

26

6. TOY MACHINE II

‣ conditionals and loops
‣ input and output
‣ arrays
‣ von Neumann architecture
‣ TOY emulatorR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

TOY emulator

Q. How did we debug all our TOY programs?
A. We wrote a Java program to emulate a TOY machine.
 
Emulator. Hardware or software that enables one computer system to behave like another.
 
 
 
 
 
 
 
 
Remarks.

・YOU could write a TOY emulator (ahead).

・We designed TOY by refining this code.

・All computers are designed in this way.
28

estimated number of TOY devices: 1 billion+

estimated number of Android devices: 1 billion+

~/cos126/toy> more add.toy

8AFF

8BFF

1CAB

9CFF

0000

~/cos126/toy> java-introcs TOYLite add.toy

0008

0005

000D

TOY emulator in Java: high-level design

Goal. Write a Java program that emulates the TOY machine.

29

public class TOYLite {

 public static void main(String[] args) {

 int pc = 0x10; // program counter
 int[] R = new int[16]; // registers
 int[] M = new int[256]; // main memory

 In in = new In(args[0]);

 for (int i = pc; !in.isEmpty(); i++)

 M[i] = Integer.parseInt(in.readString(), 16);

 while (true) {

 // 1. fetch instruction and increment PC
 // 2. decode instruction
 // 3. execute instruction
 }

 }

}

base 16
print R[C] to TOY standard output

takes TOY
program as input

emulates TOY program
and produces same output

hex literal (starts with 0x)

read R[A] and R[B]
from TOY standard input

add R[A] and R[B]

TOY standard input

TOY emulator: fetch and increment

Fetch. Get instruction from memory location indexed by PC.
Increment. Increment PC by 1.

30

int ir = M[pc]; // fetch
pc++; // increment

TOY emulator: decode instruction

Decode. Extract relevant components from instruction register (IR).

・Call String.format() to get 4 hex digits as a String.

・Call substring() to extract relevant hex digit(s).

・Call Integer.parseInt() to convert from hex string.
 
Alternative. Use shift-and-mask technique.

31

int ir = M[pc]; // fetch
pc++; // increment

String hex = String.format("%04X", ir);

int op = Integer.parseInt(hex.substring(0, 1)), 16); // opcode
int d = Integer.parseInt(hex.substring(1, 2)), 16); // destination d
int s = Integer.parseInt(hex.substring(2, 3)), 16); // source s
int t = Integer.parseInt(hex.substring(3, 4)), 16); // source t
int addr = Integer.parseInt(hex.substring(2, 4)), 16); // address

hex

0 1 2 3

1 C A B

op d s t

TOY emulator: execute instruction

Execute. Use Java switch statement to implement state change for each of 16 instructions.

32

if (op == 0) break; // halt

switch (op) {

 case 1: R[d] = R[s] + R[t]; break;

 case 2: R[d] = R[s] - R[t]; break;

 case 3: R[d] = R[s] & R[t]; break;

 case 4: R[d] = R[s] ^ R[t]; break;

 case 5: R[d] = R[s] << R[t]; break;

 case 6: R[d] = R[s] >> R[t]; break;

 case 7: R[d] = addr; break;

 case 8: R[d] = M[addr]; break;

 case 9: M[addr] = R[d]; break;

 case 10: R[d] = M[R[t]]; break;

 case 11: M[R[t]] = R[d]; break;

 case 12: if (R[d] == 0) pc = addr; break;

 case 13: if (R[d] > 0) pc = addr; break;

 case 14: pc = R[d]; break;

 case 15: R[d] = pc; pc = addr; break;

}

TOY emulator in Java

A few missing details.

・R[0] is always 0000.

・TOY standard input/output.

・16-bit TOY word vs. 32-bit Java int.

・More flexible TOY program input format.
 
Full implementation. See booksite.
 
Implications.

・Can run any TOY program!

・Can develop TOY code on another machine.

・Easy to change TOY design.

public class TOYLite {

 public static void main(String[] args) {

 int pc = 0x10; // program counter
 int[] R = new int[16]; // registers
 int[] M = new int[256]; // main memory

 In in = new In(args[0]);

 for (int i = pc; !in.isEmpty(); i++)

 M[i] = Integer.parseInt(in.readString(), 16);

 while (true) {

 int ir = M[pc++]; // fetch
 pc++; // increment

 int op = (ir >> 12) & 0xF; // opcode
 int d = (ir >> 8) & 0xF; // destination d
 int s = (ir >> 4) & 0xF; // source s
 int t = (ir >> 0) & 0xF; // source t
 int addr = (ir >> 0) & 0xFF; // address

 if (op == 0) break;

 switch (op) {

 case 1: R[d] = R[s] + R[t]; break;

 case 2: R[d] = R[s] - R[t]; break;

 case 3: R[d] = R[s] & R[t]; break;

 case 4: R[d] = R[s] ^ R[t]; break;

 case 5: R[d] = R[s] << R[t]; break;

 case 6: R[d] = R[s] >> R[t]; break;

 case 7: R[d] = addr; break;

 case 8: R[d] = M[addr]; break;

 case 9: M[addr] = R[d]; break;

 case 10: R[d] = M[R[t]]; break;

 case 11: M[R[t]] = R[d]; break;

 case 12: if (R[d] == 0) pc = addr; break;

 case 13: if (R[d] > 0) pc = addr; break;

 case 14: pc = R[d]; break;

 case 15: R[d] = pc; pc = addr; break;

 }

 }

 }

}

33

state of machine

parse input file

fetch, increment

decode
instruction

execute
instruction

Visual X-TOY

Visual X-TOY. A Java IDE that emulates the TOY machine.

・GUI, text editor, auto-comments, debugger, many other features.

・Written by Brian Tsang ’04 (using Java 1.3).

・Available on the booksite.

・YOU can develop TOY software.

 
Same approach used for all new systems.

・Build simulator and development environment.

・Develop and test software.

・Build and sell hardware.

34

and still works 20+ years later!

Assignment 8

Backward compatibility

Q. How to run old software on a new machine architecture?
 
Approach 1. Rewrite it all: time-consuming, expensive, error-prone.
Approach 2. Write an emulator for old computer on the new one.
 
Ex 1. Pac–Man.
Ex 2. Rosetta 2.
 
 
 
 
 
 
 
 
Impact. Old software remains available.

35

run 64-bit Intel on Apple Silicon

Pac-Man 2020s
(Android phone)

Pac-Man 1980s
(arcade machine)

64-bit Intel Apple Silicon

Virtual machines

Virtual machine. Software-based emulation of a physical computer.

・Can run/develop software without having physical computer.

・Provides portability, scalability, flexibility, and security.  

TOY virtual machine. Java program that can execute any TOY .toy file.
 
Java virtual machine (JVM). Abstract machine that can execute any Java .class file.
 
 
Mobile app IDEs. Provide emulator for Android, iPhone, Apple watch, …
 
 
Cloud computing. Virtual CPU, memory, storage, OS, and network.

36
Amazon EC2 Google CE Microsoft Azure

“write once, run anywhere”

Layers of abstraction

Computer systems are built by accumulating layers of abstraction.
 
Ex. Running a TOY program.  
 
 
 
 
 
 

37

Processor

Machine language

Java virtual machine

Java

TOY emulator

TOY program

Big ideas

Digital computers. Encode “everything” in binary, including programs and data.
 
von Neumann machine. Store programs and data in same memory.  

Indirection. Manipulate a value through its memory address.  

Emulation. Make one system imitate another.

38

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Microprocessor and Binary Adobe Stock education license

David Wheeler Computer Laboratory, Cambridge CC BY 2.0

Simply Explained Indirection Geek and Poke

Pointers xkcd CC BY-NC 2.5

J. Presper Eckert Michael Denning

John Mauchly Encyclopædia Britannica

Programming ENIAC U.S. Army public domain

Vacuum Tube Adobe Stock education license

John von Neumann Los Alamos National Labs LANL

https://stock.adobe.com/images/digital-binary/1732020
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:EDSAC_(14)_(cropped).jpg
https://creativecommons.org/licenses/by/2.0/
https://geekandpoke.typepad.com/geekandpoke/2012/03/simply-explained.html
https://imgs.xkcd.com/comics/pointers.png
https://creativecommons.org/licenses/by-nc/2.5/
https://www.computerhistory.org/revolution/birth-of-the-computer/4/80/328
https://www.britannica.com/biography/John-Mauchly
https://jwa.org/media/computing-eniac
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/vacuum-tube/356062
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif
https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif#Licensing

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

Apollo 11 NASA public domain

Integrated Circuit NASA public domain

Margaret Hamilton MIT Museum

Light Bulb openclipart.com CC0 1.0

EDSAC University of Cambridge CC BY 2.0

Old Personal Computer Adobe Stock education license

Sprint Phone www.zdnet.com

Google Data Center Alphabet / Google

Pac-Man Arcade Machine NAMCO

Pac-Man on Android Leslie Wong

Rosetta Stone Adobe Stock education license

https://commons.wikimedia.org/wiki/File:Apollo_17_Command_Module_AS17-145-22261HR.jpg#mw-jump-to-license
https://en.wikipedia.org/wiki/Public_domain
https://commons.wikimedia.org/wiki/File:Agc_flatp.jpg
https://en.wikipedia.org/wiki/Public_domain
https://webmuseum.mit.edu/media.php?term=margaret+hamilton&module=people&type=keyword&x=0&y=0&kv=9507&record=0&media=6%20Photos:%20MIT%20Museum
https://openclipart.org/detail/12935/light-bulb
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:EDSAC_(19).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://stock.adobe.com/images/old-personal-computer/449839176
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.zdnet.com/article/good-job-with-iphone-4-but-the-sprint-htc-evo-4g-is-staying/
https://www.datacenterknowledge.com/machine-learning/you-can-now-rent-entire-ai-supercomputer-google-cloud
https://arcade1up.com/products/pac-man-deluxe-arcade-game
https://www.lesliewong.us/2011/06/16/pac-man-on-android/
https://stock.adobe.com/images/rosetta-stone-key-to-deciphering-egyptian-hieroglyphs/218872627
https://stock.adobe.com/enterprise-conditions#educationLicenses

