
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the !eld,
they also are masters of exposition. I am sure that every serious computer scientist

will !nd this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the !eld.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scienti!c studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the !rst half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded !gures and code
n An all-new chapter introducing analytic combinatorics
n Simpli!ed derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the !eld’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the !eld of analytic combinatorics;
having solved numerous dif!cult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/8/25 4:20  PM

6. TOY MACHINE I

‣ overview
‣ data types
‣ instructions
‣ operating the machine

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The TOY computing machine

TOY is an imaginary machine invented for this course.
 
It is similar in design to:

・Ancient computers.

・Today’s microprocessors.

・Countless other devices designed and built over the past 60 years.

2

smartphone processor, 2020sPDP-8, 1970sTOY machine

Reasons to study TOY

Learn about machine language programming.

・How do Java programs relate to your computer?

・Key to understanding Java references (and C pointers).

・Still necessary in some modern applications.
 
 
 
 
 
Prepare to learn about computer architecture.

・How does your computer’s processor work?

・What are its basic components?

・How do they interact?

3

multimedia, computer games,
embedded devices, scientific computing, …

see COS 217

see COS 375 / ECE 375

see COS 320

6. TOY MACHINE I

‣ overview
‣ data types
‣ instructions
‣ operating the machine

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Data and programs are encoded in binary

Bit (binary digit). Basic unit of information in computing: either 0 or 1.
 
Everything stored in a computer is a sequence of bits.

・Data and programs.

・Numbers, text, pictures, songs, movies, biometrics, 3D objects, …
 
Q. Why binary?
A. Easy to represent two states in physical world.

5

0 !

1 "

Decimal number. A number expressed in base 10.

・Place-value notation with ten symbols (0–9).

・Used by most modern cultures.

Decimal number system

6

decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3 2 1 0

6 3 7 5

6 ⋅ 103 + 3 ⋅ 102 + 7 ⋅ 101 + 5 ⋅ 100 = 637510

decimal

Binary number system

Binary number. A number expressed in base 2.

・Place-value notation with two symbols (0 and 1).

・Used by all modern computers.

7

decimal binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

212 +211 +27 +26 +25 +22 +21 +20 = 637510

lights

switches

binary

Binary t-shirt

8

Hexadecimal number system

Hexadecimal number. A number expressed in base 16.

・Place-value notation with 16 symbols (0–9, A–F).

・Easy to convert from binary to hex (and vice versa).

・More convenient for programmers.

9

4 bits per hex digit
(because 24 = 16)

binary

hex

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

1 8 E 7

1 ⋅ 163 8 ⋅ 162 14 ⋅ 161 7 ⋅ 160 = 637510

decimal binary hex

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

lights

switches

TOY I: quiz 1

What is 0010101110101101 in hexadecimal?

A. 2 B A D

B. A E B 1

C. E B A D

D. D A B 2

10

decimal binary hex

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

2 B A D

Inside the box

TOY machine components.

・256 memory cells.

・16 registers.

・1 arithmetic logic unit (ALU).

・1 program counter (PC).

・1 instruction register (IR).

11

load
from

store
to

REGISTERSMEMORY

...

IRPC

ALU

Memory

Memory.

・Holds data and instructions.

・256 words of memory.

・16 bits per word.

Memory is addressable.

・Specify individual word using array notation.

・Use hexadecimal for addresses: 00 to FF.

・Ex: M[F2] = C0DE.

12

...

00 0 0 0 0

01 F F F E

02 0 0 0 D

03 0 0 0 3

04 0 0 0 1

05 0 0 0 0

06 0 0 0 0

07 0 0 0 0

08 0 0 0 0

09 0 0 0 0

0A 0 0 0 0

0B 0 0 0 0

0C 0 0 0 0

0D 0 0 0 0

0E 0 0 0 0

0F 0 0 0 0

10 8 A 1 6

11 8 B 1 6

12 1 C A B

13 9 C 1 7

14 0 0 0 0

15 0 0 0 8

16 0 0 0 5

17 0 0 0 D

18 0 0 0 0

19 0 0 0 0

1A C 0 2 4

1B 0 0 0 0

1C 0 0 0 0

1D 0 0 0 0

1E 0 0 0 0

1F 0 0 0 0

F0 C A F E

F1 A B B A

F2 C 0 D E

F3 8 B A D

F4 F 0 0 D

F5 F A C E

F6 1 3 7 7

F7 D 1 C E

F8 C 1 A O

F9 D E A D

FA B E E F

FB 1 D E A

FC A 1 D E

FD 0 B 0 E

FE B E A D

FF 0 0 0 0

start thinking
in hexadecimal

8-bit
address

16-bit
word

MEMORY

one word
of memory

Arithmetic logic unit

Arithmetic logic unit (ALU).

・TOY’s computational engine.

・A calculator, not a computer.

・Hardware that implements all data-type operations (e.g., add and subtract).

13

ALU

Registers.

・Scratch space for calculations and data movement.

・16 registers, each storing one 16-bit word.

・Addressable as R[0] through R[F].

・R[0] always stores 0000.
 
Q. What’s the difference between registers and main memory?
A. Registers are connected directly with ALU.

– faster than main memory
– more expensive than main memory

Registers

14

0 0 0 0 0

1 0 0 0 1

2 0 0 0 2

3 C A F E

4 C 0 D E

5 0 0 0 0

6 F A C E

7 0 0 0 0

8 F 0 0 D

9 0 0 0 0

A 0 0 0 8

B 0 0 0 5

C 0 0 0 D

D 0 0 0 0

E 0 0 0 0

F 0 0 0 0

16-bit
word

REGISTERS

Control

TOY operates by executing a sequence of instructions.
 
Program counter (PC). Stores memory address (8 bits) of next instruction to be executed.
Instruction register (IR). Stores instruction (16 bits) being executed.
 
 
 
 
 
 
Fetch-increment-execute cycle.

・Fetch: Get instruction (indexed by PC) from memory and store in IR.

・Increment: Update PC to point to next instruction.

・Execute: Move data to (or from) memory; change PC; or perform calculations.

15

PC

1 2 8 B 1 6

IR

INCREM
ENT

EXECUTE

FE
TC
H

1 C A B1 3

The state of the machine

Contents of memory, registers, and PC at a particular time.

・Provide a record of what a program has done.

・Completely determines the machine will do.

16

REGISTERSMEMORY

...

ALU

16-bit words
(instructions and data)

16-bit words

IR

16-bit word
(instruction)

PC

8-bit word
(memory address)

load
from

store
to

TOY I: quiz 2

Approximate how many bytes of main memory does TOY machine have?

A. 250 bytes

B. 500 bytes

C. 4000 bytes

D. 250 MB

E. 500 GB

17

some define using powers of 2
(MB = 210 bytes)

term symbol quantity

bit b 1 bit

byte B 8 bits

kilobyte KB 1000 bytes

megabyte MB 10002 bytes

gigabyte GB 10003 bytes

terabyte TB 10004 bytes

⋮ ⋮ ⋮

6 GB main memory,
1 TB internal storage

256 words
(2 bytes per word)

6. TOY MACHINE I

‣ overview
‣ data types
‣ instructions
‣ operating the machine

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

TOY data type

A data type is a set of values and a set of operations on those values.
 
TOY’s data type.

・Value: 16-bit two’s complement integer.

・Operations: arithmetic (add, subtract) and bitwise (AND, XOR, shift).
 
Representation. Each value is represented using one 16-bit word.
 
 
 
 
 
 
 
 
Note. All other types of data must be implemented with software.

19

32-bit integers, floating-point numbers,
booleans, characters, strings, …

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

Unsigned integers (16 bit)

Values. Integers 0 to 216 − 1.
 
Operations.

・Arithmetic: add, subtract.

・Bitwise: AND, XOR, left shift, right shift.
 
Representation. 16 bits.

20

decimal hex binary

0 0000 0000000000000000

1 0001 0000000000000001

2 0002 0000000000000010

3 0003 0000000000000011

4 0004 0000000000000100

⋮ ⋮ ⋮

65,533 FFFD 1111111111111101

65,534 FFFE 1111111111111110

65,535 FFFF 1111111111111111

only non-negative integers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

212 +211 +27 +26 +25 +22 +21 +20 = 637510

binary

1 8 E 7

1 × 163 + 8 × 162 + 14 × 161 + 7 × 160 = 637510

hex

largest integer
(216− 1)

Signed integers (16-bit two’s complement)

Values. Integers −215 to 215 − 1.
 
Operations.

・Arithmetic: add, subtract.

・Bitwise: AND, XOR, left shift, right shift.

・Comparison: test if positive, test if zero.
 
Representation. 16-bit two’s complement.

・For 0 ≤ x < 215, 16-bit unsigned representation of x.

・For −215 ≤ x < 0, 16-bit unsigned representation of . 216 − |x |

21

decimal hex binary

−32,768 8000 1000000000000000

−32,767 8001 1000000000000001

−32,766 8002 1000000000000010

⋮ ⋮ ⋮

−3 FFFD 1111111111111101

−2 FFFE 1111111111111110

−1 FFFF 1111111111111111

smallest integer
(−215)

includes negative integers!

sign bit

representation for 0 is
0000000000000000

largest integer
(215− 1)

 0 0000 0000000000000000

+1 0001 0000000000000001

+2 0002 0000000000000010

+3 0003 0000000000000011

⋮ ⋮ ⋮

+32,765 7FFD 0111111111111101

+32,766 7FFE 0111111111111110

+32,767 7FFF 0111111111111111

decimal hex binary

“complement”
of 216

Calculations with two’s complement integers

 
Addition. To compute x + y :

・Add as unsigned integers.

・Ignore any overflow.
 
 
 
 
 
Negation. To convert from x to −x (or vice versa):

・Flip all bits.

・Add 1.

22

 0000000001111110 12610

 1111111110000001 flip bits

+ 0000000000000001 add 1

 1111111110000010 −12610

 1111111110000010 −12610

+ 0000001111101000 1,00010

 0000001101101010 87410

ignore carry bit
out sign bit

Overflow with two’s complement integers

Integer overflow. Result of arithmetic operation is outside prescribed range (too large or small).

23
https://xkcd.com/571

 0111111111111111 32,76710

+ 0000000000000001 110

 1000000000000000 −32,76810

overflow (carry into sign bit)

largest integer (215− 1)

smallest integer (−215)

https://xkcd.com/571
https://xkcd.com/571

TOY data type: bitwise operations

Bitwise AND. Apply and operation to corresponding bits.
 
 
 
 
 
 
Bitwise XOR. Apply xor operation to corresponding bits.

24

0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0

& 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1

0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

x y x & y

0 0 0

0 1 0

1 0 0

1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

^ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

x y x ^ y

0 0 0

0 1 1

1 0 1

1 1 0

AND

XOR
~/toy/toy1> jshell
jshell> int a = 3 ^ 5;
a ==> 6

6. TOY MACHINE I

‣ overview
‣ data types
‣ instructions
‣ operating the machine

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

TOY instructions: halt

TOY program. A TOY program is a sequence of TOY instructions.
Instructions. Any 16-bit value can be interpreted as a TOY instruction.
 
Halt. Stop executing the program.

26

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

opcode destination d source s source t
(halt)

TOY instructions: add

TOY program. A TOY program is a sequence of TOY instructions.
Instructions. Any 16-bit value can be interpreted as a TOY instruction.

Add. Add two 16-bit integers from registers and store the sum in a register.
 
 
 
 
 
 
 
Pseudocode. R[C] = R[A] + R[B]

27

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

1 C A B

opcode destination d source s source t
(add)

 Registers

R[0] 0 0 0 0

R[1] 0 0 0 1

R[2] 0 0 1 0

R[3] C A F E

R[4] 0 0 0 1

R[5] 0 0 0 0

R[6] C 0 D E

R[7] 0 0 0 0

R[8] F 0 0 D

R[9] 0 0 0 0

R[A] 0 0 0 8

R[B] 0 0 0 5

R[C] 0 0 0 0

R[D] 0 0 0 0

R[E] 0 0 0 0

R[F] 0 0 0 0

0 0 0 D

0 0 0 8

0 0 0 5add R[A] and R[B];
put result in R[C]

TOY instructions: load and store

TOY program. A TOY program is a sequence of TOY instructions.
Instructions. Any 16-bit value can be interpreted as a TOY instruction.
 
Load. Copy a 16-bit integer from a memory cell to a register.  

 
 
 
 
 
Store. Copy a 16-bit integer from a register to a memory cell.

28

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1

8 A 1 5

opcode destination d addresss
(load)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1

9 C 1 7

opcode destination d addresss
(store)

R[A] = M[15]

load data from M[15] into R[A]

M[17] = R[C]

store contents of R[C] into M[17]

Your first TOY program

Add two integers.

・Load operands from memory into two registers.

・Add the 16-bit integers in the two registers.

・Store the result in memory.

29

 ⋮ ⋮
10: 8A15 R[A] = M[15]

11: 8B16 R[B] = M[16]

12: 1CAB R[C] = R[A] + R[B]

13: 9C17 M[17] = R[C]

14: 0000 halt

15: 0008 input 1

16: 0005 input 2

17: 0000 output

 ⋮ ⋮

 ⋮ ⋮

R[A]
R[B]
R[C]
 ⋮ ⋮

 MEMORY PCREGISTERS

0 01 11 21 31 41 0

0 0 0 8
0 0 0 5
0 0 0 D

000D0000

0 0 0 0
0 0 0 0
0 0 0 0

Your first TOY program (with different data)

Q. How can you tell whether a word is an instruction or data?
A. If the PC has its address, it is an instruction.

30

 MEMORY

 ⋮ ⋮
10: 8A15 R[A] = M[15]

11: 8B16 R[B] = M[16]

12: 1CAB R[C] = R[A] + R[B]

13: 9C17 M[17] = R[C]

14: 0000 halt

15: 8A15 input 1

16: 1CAB input 2

17: 0000 output

 ⋮ ⋮

 ⋮ ⋮

R[A]
R[B]
R[C]
 ⋮ ⋮

 MEMORY PCREGISTERS

0 01 11 21 31 41 0

8 A 1 5
1 C A B
A 6 C 0

A6C00000

0 0 0 0
0 0 0 0
0 0 0 0

data

instruction

Instruction set

Instruction set. Complete list of machine instructions.

・First hex digit (opcode) specifies which instruction.

・Each instruction changes machine in well-defined way.

31

opcode instruction

0 halt
1 add
2 subtract
3 bitwise and
4 bitwise xor
5 shift left
6 shift right

A load indirect
B store indirect

7 load address
8 load
9 store

C branch if zero
D branch if positive
E jump register
F jump and link

category opcodes implements changes

arithmetic and
logic operations

1 2 3 4 5 6 data-type
operations registers

data
movement

7 8 9 A B data moves between
registers and memory registers, memory

flow of
control

0 C D E F conditionals, loops,
and functions program counter

Instruction set

Instruction set. Complete list of machine instructions.

・First hex digit (opcode) specifies which instruction.

・Each instruction changes machine in well-defined way.
 
Instruction formats. How to interpret a 16-bit instruction? 

・Format RR: opcode and three registers.  
 
 
 

・Format A: opcode, one register, and one memory address.

32

opcode destination d source s source t

opcode destination d address addr

opcode format instruction

0 — halt
1 RR add
2 RR subtract
3 RR bitwise and
4 RR bitwise xor
5 RR shift left
6 RR shift right

A RR load indirect
B RR store indirect

7 A load address
8 A load
9 A store

C A branch if zero
D A branch if positive
E RR jump register
F A jump and link

TOY I: quiz 3

Which instruction copies the values in R[A] to R[B] ?

A. 1BA0 R[B] = R[A] + R[0]

B. 2BA0 R[B] = R[A] - R[0]

C. 3BAA R[B] = R[A] & R[A]

D. All of the above.

33

R[0] is always 0000

6. TOY MACHINE I

‣ overview
‣ data types
‣ instructions
‣ operating the machine

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Outside the box

User interface

・Switches.

・Lights.

・Control buttons.

35

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

TOY machine demo

To load an instruction or data into memory:

・Set the 8 memory address switches.

・Set the 16 data switches.

・Press LOAD.

36

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

TOY machine demo

To view the data in memory:

・Set the 8 address switches.

・Press LOOK.

37

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

TOY machine demo

To run a program:

・Set the 8 address switches to the address of first instruction.

・Press RUN.

38

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

Switches and lights

Q. Did people really program this way?
A. Yes! We have it good.

39

DEC PDP-8 (1964)

TOY summary

TOY machine has same basic architecture as modern CPUs:

・Arithmetic logic unit (ALU).

・Memory and registers.

・Program counter (PC) and instruction register (IR).

・Input and output.

 
TOY supports same basic programming constructs as Java:

・Primitive data types.

・Arithmetic/logic operations.

・Conditionals and loops.

・Input and output.

・Arrays.

・Functions.

・Linked structures.

40

next lecture

see textbook

TOY reference sheet

41

opcode operation format pseudo-code

0 halt — halt

1 add RR R[d] = R[s] + R[t]

2 subtract RR R[d] = R[s] - R[t]

3 bitwise and RR R[d] = R[s] & R[t]

4 bitwise xor RR R[d] = R[s] ^ R[t]

5 shift left RR R[d] = R[s] << R[t]

6 shift right RR R[d] = R[s] >> R[t]

7 load address A R[d] = addr

8 load A R[d] = M[addr]

9 store A M[addr] = R[d]

A load indirect RR R[d] = M[R[t]]

B store indirect RR M[R[t]] = R[d]

C branch zero A if (R[d] == 0) PC = addr

D branch positive A if (R[d] > 0) PC = addr

E jump register RR PC = R[d]

F jump and link A R[d] = PC; PC = addr

format RR

format A

zero R[0] is always 0000.

standard input Load from M[FF].

standard output Store to M[FF].

opcode destination d source s source t

opcode destination d address addr

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

PDP-8 Philipp Hachtmann

A16 Bionic Apple Inc.

Silhouette Detective publicdomainvectors.org CC0 1.0

Modern Laptop Adobe Stock education license

Computer Chip and Earth Adobe Stock education license

3D 0s and 1s Adobe Stock education license

Toggle Switch Adobe Stock education license

Light Bulb Adobe Stock education license

Electron Nuclei Adobe Stock education license

Quantum Spin Adobe Stock education license

Counting to Ten Adobe Stock education license

http://pdp8.hachti.de/
https://www.quora.com/Why-does-Apple-use-Intel-processors-in-their-phones-instead-of-Snapdragon-processors
https://publicdomainvectors.org/en/free-clipart/Silhouette-vector-image-of-detective/22431.html
https://creativecommons.org/publicdomain/zero/1.0/
https://stock.adobe.com/images/modern-laptop/14041224
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/3d-illustration-of-computer-chip-and-earth-globe/622084818
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/3d-data-abstract-cyberspace-background/9044296
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/toggle-switch/33554919
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/glowing-and-turned-off-light-bulb/35605042
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/electron-nuclei-the-directions-of-the-charges-are-positive-and-negative/547017722
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/quantum-spin-number-diagram-vector-illustration-isolated-on-white-background/506414557
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cartoon-kids-hands-count-with-fingers-from-one-to-ten-counting-gestures-children-hand-with-sleeves-numbers-studying-learning-basic-math-vector-set/500710879
https://stock.adobe.com/enterprise-conditions#educationLicenses

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

image source license

10 Types of People Zazzle

Slide Rule sliderulemuseum.com

Abacus Wikimedia CC BY-SA 3.0

Marchant XLA Calculator Wikimedia public domain

Marchant SCM Calculator Wikimedia CC BY 3.0

Casio fx-85WA Calculator Wikimedia CC BY-SA 3.0

Fetch–Increment–Execute Adobe Stock education license

 iPhone 14 Pro Max Apple

Can’t Sleep xkcd CC BY-NC 2.5

Halt Sign Wikimedia public domain

Programming a PDP-8 computerhistory.org

Computer Chip and Binary Adobe Stock education license

https://www.zazzle.com/there_are_only_10_types_of_people_in_the_world_bin_t_shirt-235022669264823702
https://sliderulemuseum.com/SR_Class/Figure2a_Multi_Wrap_C-D.jpg
http://commons.wikimedia.org/wiki/File:Abacus_5.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Marchant_-_Odhner_clone_1950.png
https://wiki.creativecommons.org/wiki/public_domain
https://commons.wikimedia.org/wiki/File:SCM_Marchant_calculator.jpg
https://creativecommons.org/licenses/by/3.0/
http://commons.wikimedia.org/wiki/File:Calculator_casio.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://stock.adobe.com/images/three-circle-arrows-in-a-round-rotating-circular-motion-flat-vector-color-icon-for-apps-and-websites/197437162
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://gomacstar.com/shop/iphone-14-pro-max/
https://xkcd.com/571
https://creativecommons.org/licenses/by-nc/2.5/
https://commons.wikimedia.org/wiki/File:Halt_sign.svg
https://images.computerhistory.org/internethistory/pdp-8.jpg
https://stock.adobe.com/images/digital-binary/1732020
https://stock.adobe.com/enterprise-conditions#educationLicenses

