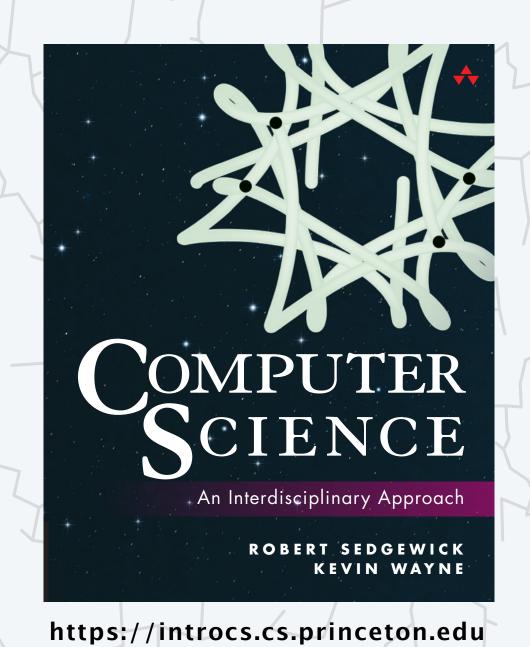
Computer Science



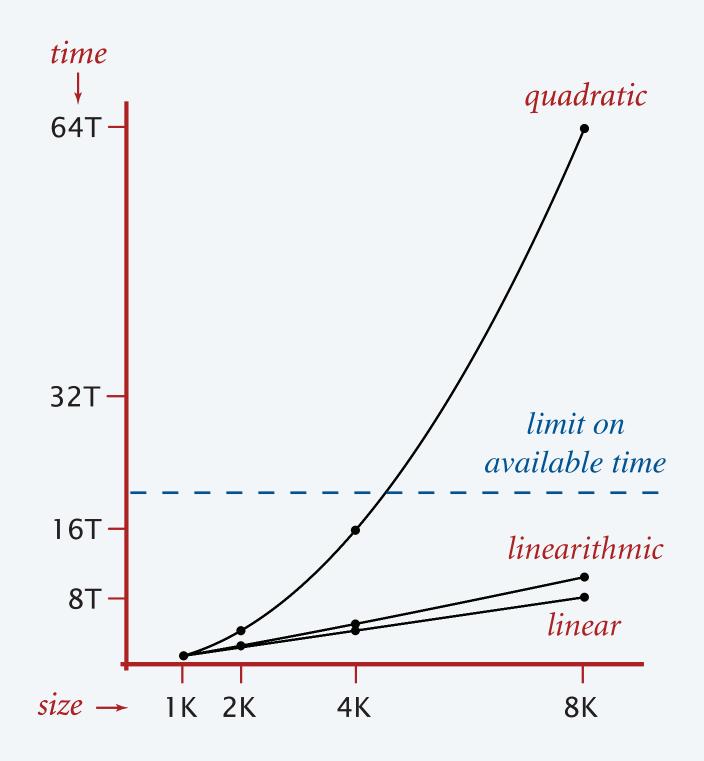
4.1 PERFORMANCE

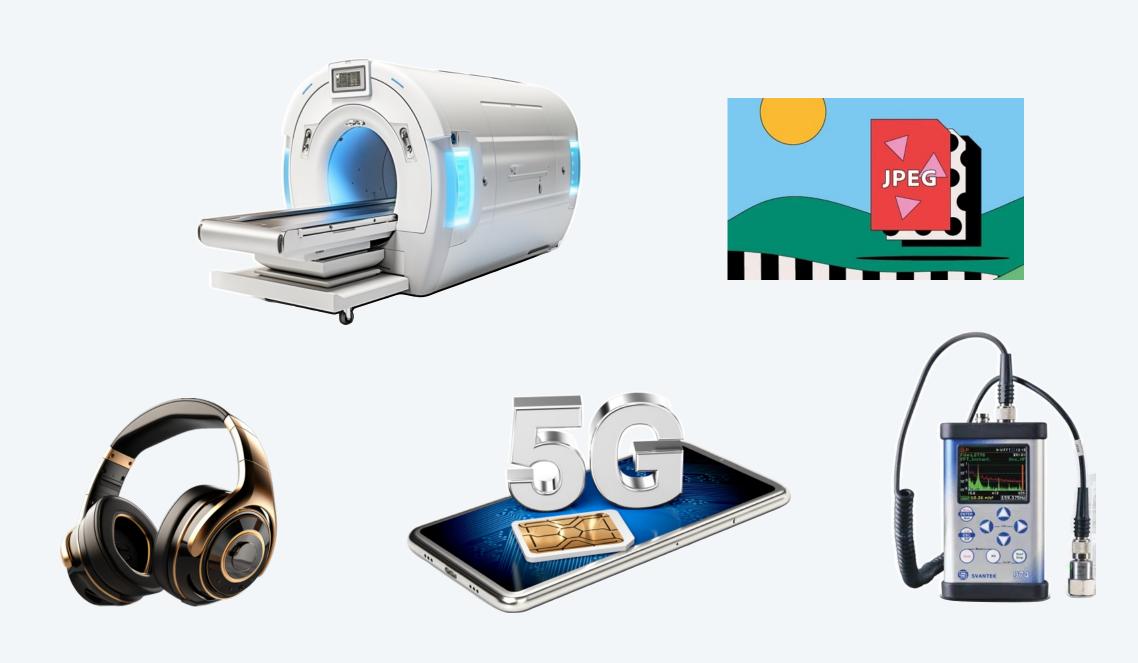
- the challenge
- empirical analysis
- mathematical models
- order-of-growth classifications
- memory usage

An algorithmic success story

Discrete Fourier transform.

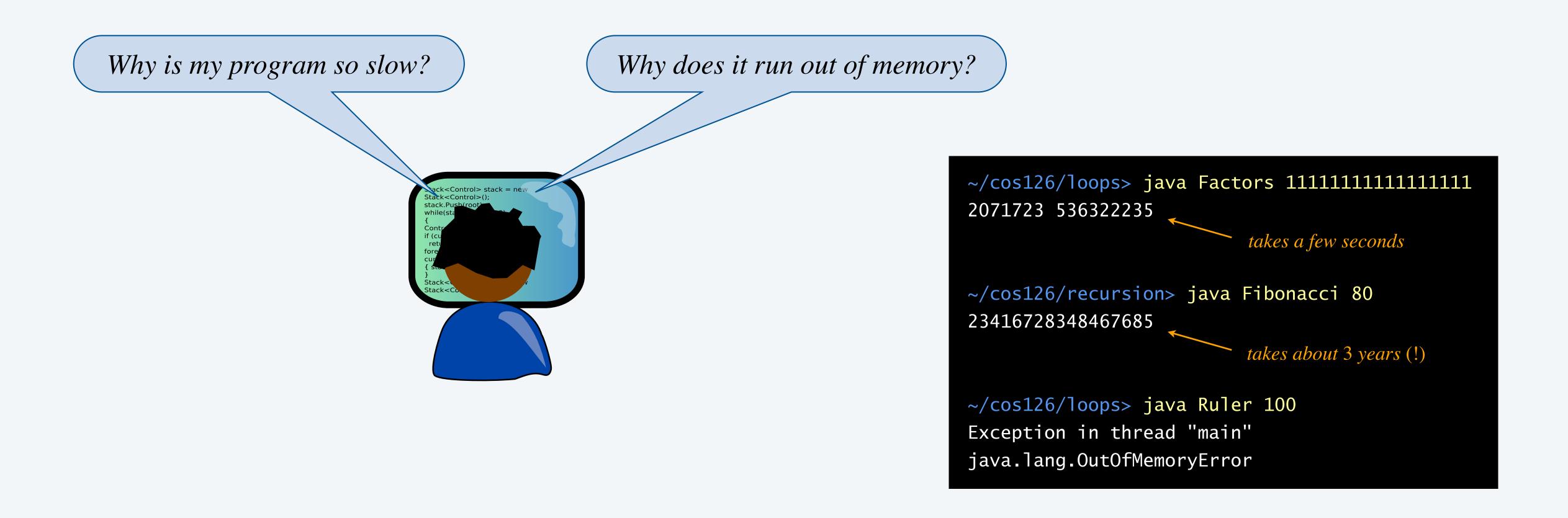
- Multiply two univariate polynomials of degree n.
- Applications: audio processing, MRI, data compression, communications, PDEs, ...
- Grade-school algorithm: $\Theta(n^2)$ steps.
- Cooley-Tukey FFT algorithm: $\Theta(n \log n)$ steps, enables new technology.





The challenge (modern version)

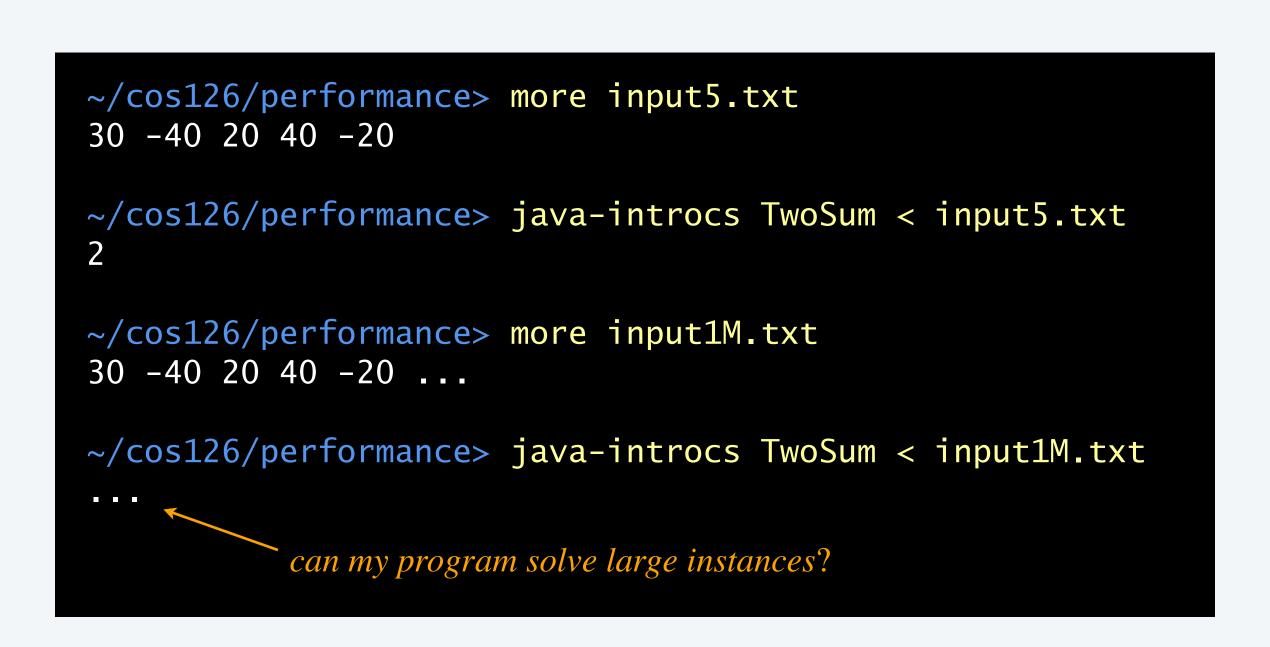
- Q1. Will my program be able to solve a large practical input?
- Q2. If not, how might I understand its performance characteristics so as to improve it?

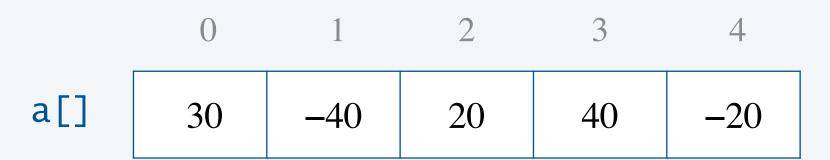


Our approach. Combination of experiments and mathematical modeling.

Two-sum problem

Two-sum problem. Given an array with n distinct integers, how many pairs sum to zero?





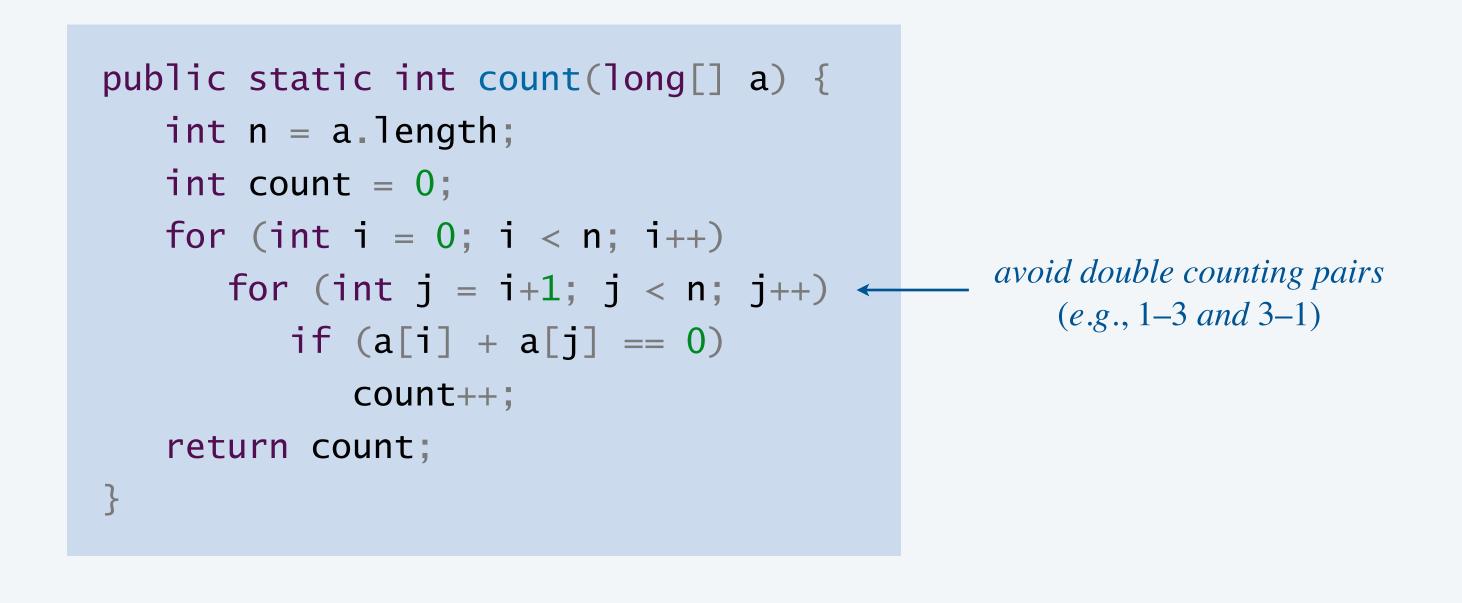
i	j	a[i]	a[j]	sum
1	3	-40	40	0
2	4	20	-20	0

Two-sum implementation

Two-sum problem. Given an array with n distinct integers, how many pairs sum to zero?

Brute-force algorithm.

- Process all distinct pairs.
- Increment counter when pair sums to 0.



	0	1	2	3	4
	30	-4 0	20	40	-20
'					

a[]

i	j	a[i]	a[j]	sum	
0	1	30	-4 0	-10	
0	2	30	20	50	
0	3	30	40	70	
0	4	30	-20	10	
1	2	-40	20	-20	
1	3	-40	40	0	✓
1	4	-40	-20	-6 0	
2	3	20	40	60	
2	4	20	-20	0	✓
3	4	40	-20	20	

Q. How long will this program take for n = 1 million integers?

Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

Observation. The running time T(n) increases as a function of the input size n.

Measuring the running time

Running time. Run the program for inputs of varying size; measure running time.

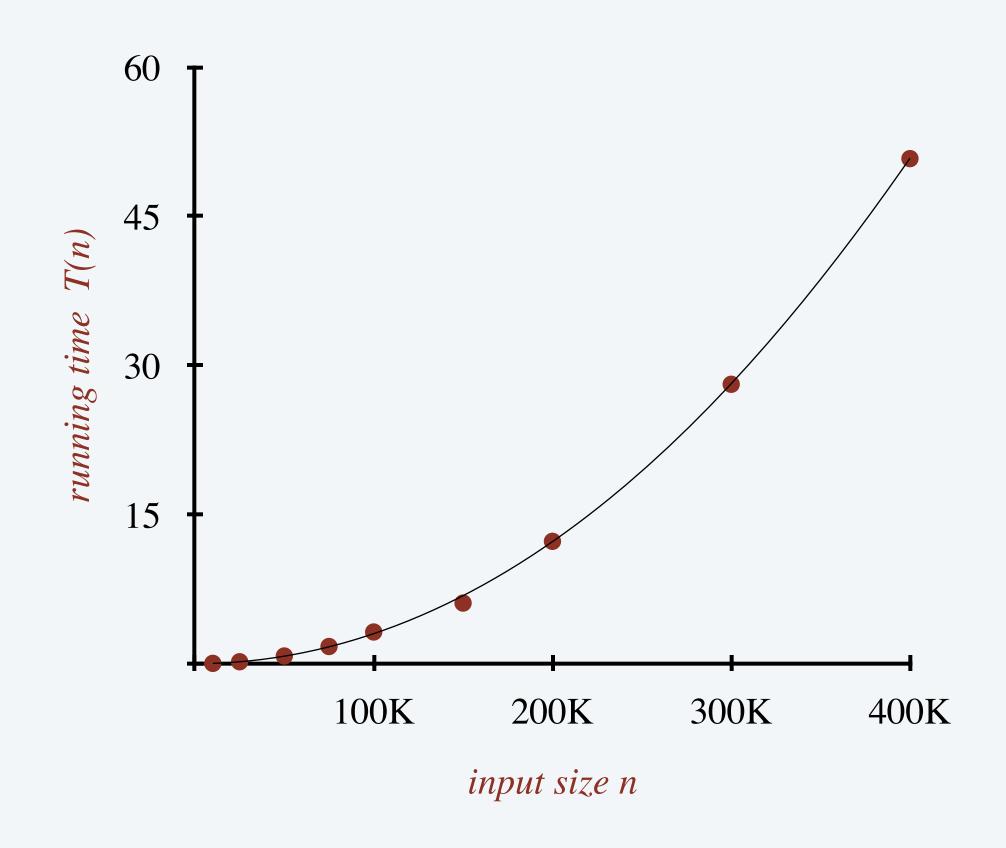
n	time (seconds) †
10,000	0.025
25,000	0.187
50,000	0.766
75,000	1.72
100,000	3.18
150,000	6.09
200,000	12.3
300,000	28.1
400,000	50.8

† Apple M2 Pro with 32 GB memory running OpenJDK 11 on MacOS Ventura

Data analysis: standard plot

Standard plot. Plot running time T(n) vs. input size n.

n	time (seconds) †
10,000	0.025
25,000	0.187
50,000	0.766
75,000	1.72
100,000	3.18
150,000	6.09
200,000	12.3
300,000	28.1
400,000	50.8



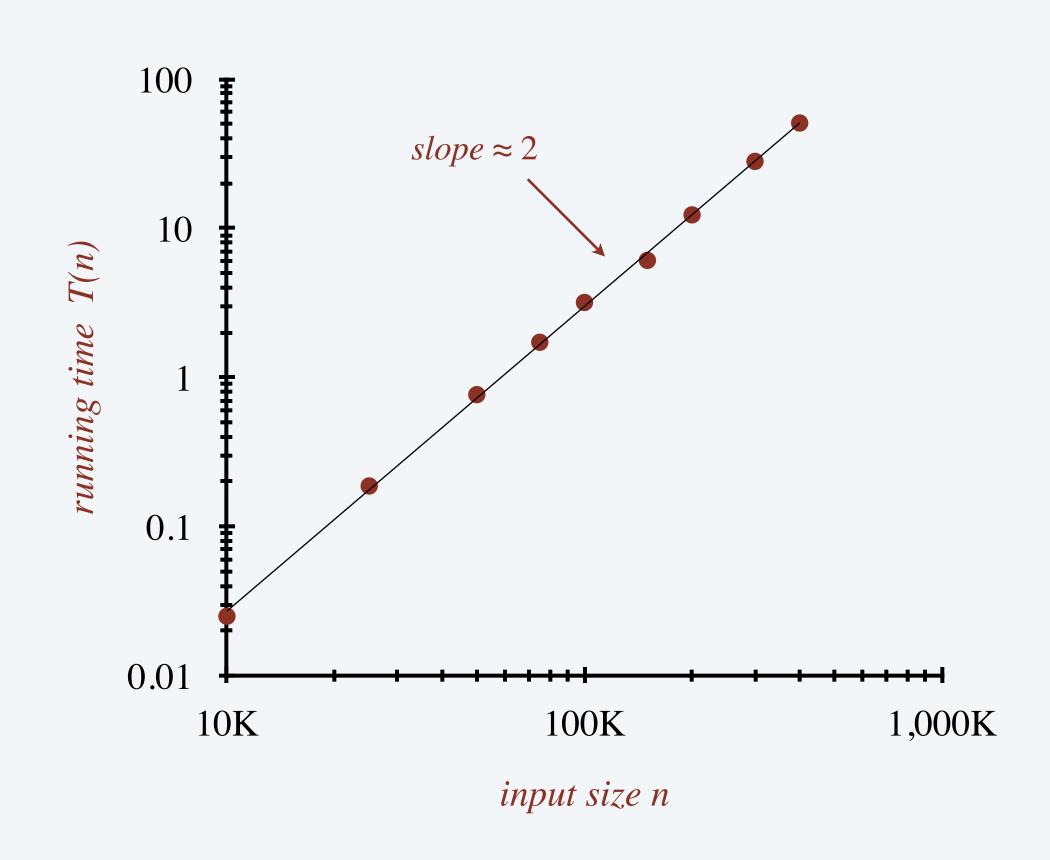
Hypothesis. The running time obeys a power law: $T(n) = a \times n^b$ seconds.

Questions. How to validate hypothesis? How to estimate constants a and b?

Data analysis: log-log plot

Log-log plot. Plot running time T(n) vs. input size n using log-log scale.

n	time (seconds) †
10,000	0.025
25,000	0.187
50,000	0.766
75,000	1.72
100,000	3.18
150,000	6.09
200,000	12.3
300,000	28.1
400,000	50.8



Regression. Fit straight line through data points.

Hypothesis. The running time T(n) is about $3.18 \times 10^{-10} \times n^2$ seconds.

, "quadratic algorithm" (stay tuned)

Doubling test: estimating the exponent b

Doubling test. Run program, doubling the size of the input.

- Assume running time obeys a power law $T(n) = a \times n^b$.
- Estimate $b = \log_2$ ratio.

n	time (seconds)	ratio	log ₂ ratio	
10,000	0.025		_	
20,000	0.15	6.0	2.6	
40,000	0.55	3.7	1.9	
80,000	2.0	3.6	1.9	
160,000	8.1	4.1	2.0	$- \log_2(8.1 / 2.0) = 2.02$
320,000	32.5	4.0	2.0	
		SPPMS	to converge to a c	constant b ≈ 2 0
		BCCITIS	io converge io a c	

$$\frac{T(n)}{T(n/2)} = \frac{an^b}{a(n/2)^b} = 2^b$$

$$\implies b = \log_2 \frac{T(n)}{T(n/2)}$$

why the log₂ ratio works

Doubling test: estimating the leading coefficient a

Doubling test. Run program, doubling the size of the input.

- Assume running time obeys a power law $T(n) = a \times n^b$.
- Estimate $b = \log_2$ ratio.
- Estimate a by solving $T(n) = a \times n^b$ for a sufficiently large value of n.

n	time (seconds)	ratio	log ₂ ratio
10,000	0.025		_
20,000	0.15	6.0	2.6
40,000	0.55	3.7	1.9
80,000	2.0	3.6	1.9
160,000	8.1	4.1	2.0
320,000	32.5	4.0	2.0

Hypothesis. Running time is about $3.17 \times 10^{-10} \times n^2$ seconds. \leftarrow

almost identical hypothesisto one obtained via regression (but less work)

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 64,000.

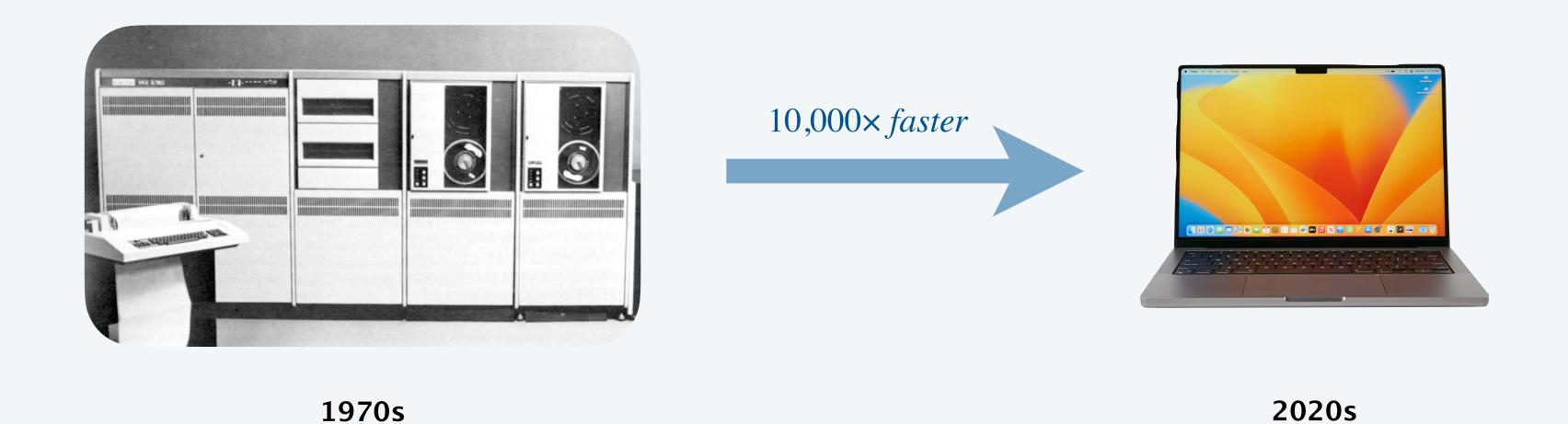
A.	400 seconds	n	time (seconds)
B.	600 seconds	2,000	0.08
C.	800 seconds	4,000	0.40
D.	1,600 <i>seconds</i>	8,000	3.20
	1,000 Becomes	16,000	26.0
		32,000	205.0
		64,000	?

Machine invariance

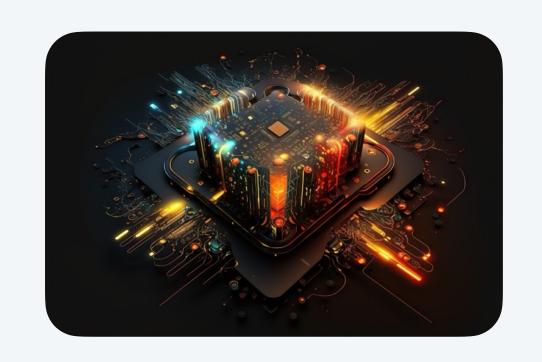
Hypothesis. Running times on different computers differ by (roughly) a constant factor.

Note. That factor can be several orders of magnitude.

(VAX-11/780)



(Macbook Pro M2)



Experimental algorithmics

System independent effects.

• Algorithm.

determines exponent b

• Input data. $in power law T(n) = a \times n^b$

System dependent effects.

• Hardware: CPU, memory, cache, ...

• Software: compiler, interpreter, garbage collector, ...

• System: operating system, network, other apps, ...

determines leading coefficient a in power law $T(n) = a \times n^b$

Bad news. Sometimes difficult to get accurate measurements.

Mathematical models for running time

Total running time: sum of frequency × cost for all operations.

- Frequency depends on algorithm and input data.
- Cost depends on CPU, compiler, operating system, ...

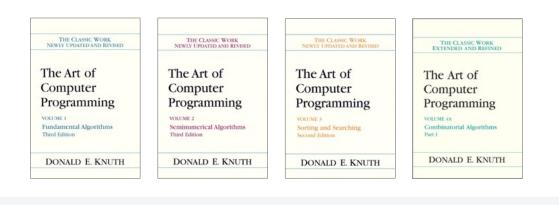
Ehe New York Times

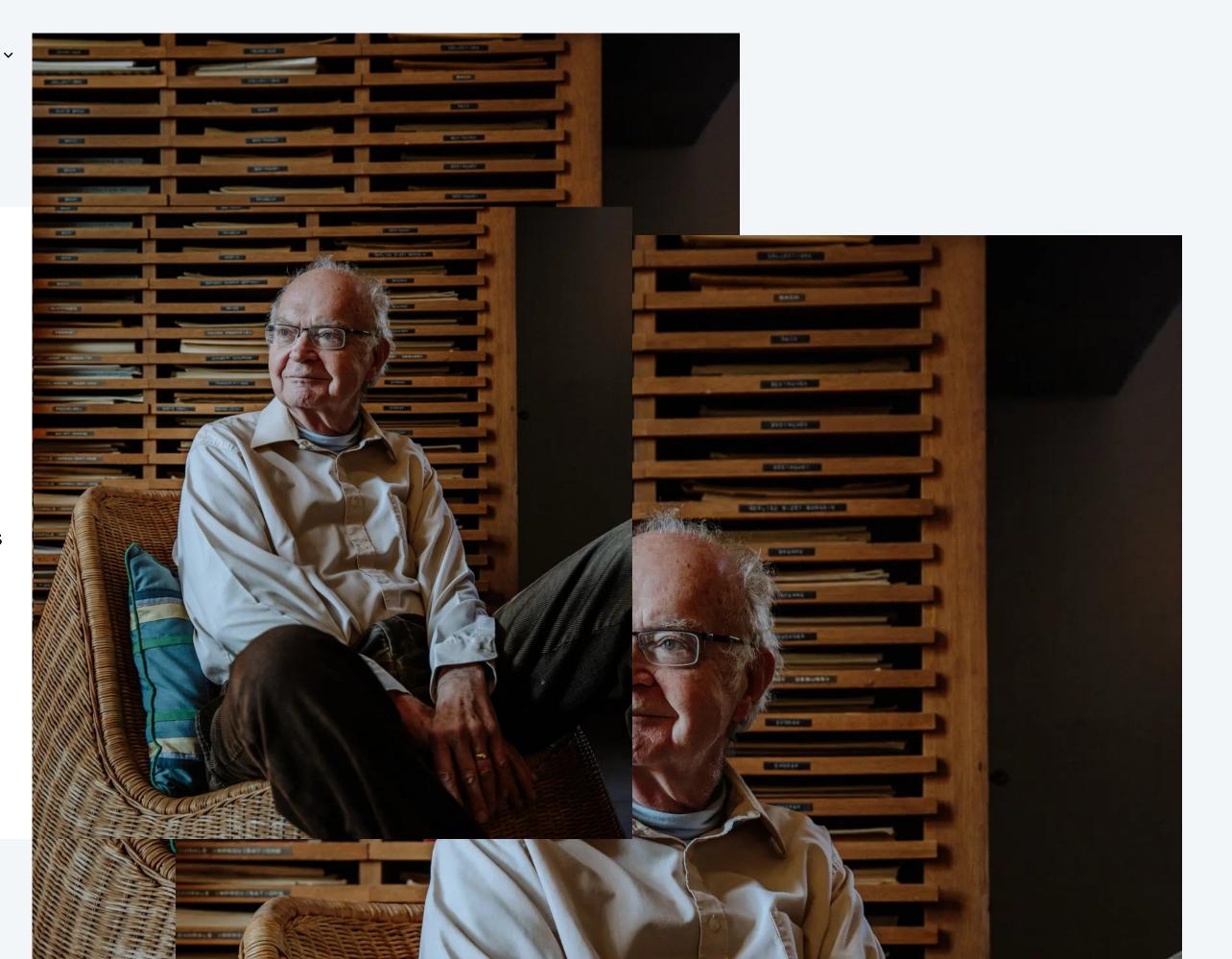
The New York Times

PROFILES IN SCIENCE

The Yoda of Silicon Valley

Donald Knuth, master of algorithms, reflects on 50 years of his opus-in-progress, "The Art of Computer Programming."





Example: one-sum

Q. How many operations as a function of input size n?

```
int count = 0;
for (int i = 0; i < n; i++)
  if (a[i] == 0)
    count++;</pre>
```

operation	cost (ns) †	frequency	
variable declaration	2/5	2	
assignment statement	1/5	2	
less than compare	1/5	n+1	
equal to compare	1/10	n	
array access	1/10	n	
increment	1/10	n to $2 n$	

tedious to count exactly

[†] representative estimates (with some poetic license)

Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time. ← array accesses, compares, API calls, floating-point operations, ...

operation	cost (ns) †	frequency	
variable declaration	2/5	2	
assignment statement	1/5	2	
less than compare	1/5	n+1	
equal to compare	1/10	n	
array access	1/10	n	cost model = array accesses
increment	1/10	n to $2 n$	

Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.

Big Theta notation. Discard lower-order terms and leading coefficient.

function	tilde notation	big Theta
$4 n^5 + 20 n + 16$	$\sim 4 n^5$	$\Theta(n^5)$
$7 n^2 + 10 n \log_2 n + 56$	$\sim 7 n^2$	$\Theta(n^2)$
$\frac{1}{6} n^3 - \frac{1}{2} n^2 + \frac{1}{3} n$	$\sim \frac{1}{6} n^3$	$\Theta(n^3)$
discard lower-order terms (e.g., $n = 1,000$: 166.67 million vs. 166		"order of growth"

Rationale.

- When n is large, lower-order terms are negligible.
- When *n* is small, we don't care.

Example: two-sum analysis

Goal. Estimate running time as a function of input size n.

int count = 0;
for (int i = 0; i < n; i++)
for (int j = i+1; j < n; j++)
if (a[i] + a[j] == 0)

$$count++;$$

$$(n-1)+(n-2)+...+2+1+0 = \frac{n(n-1)}{2}$$

$$= \binom{n}{2}$$
array accesses as cost model

- Step 1. Use array accesses as cost model.
- Step 2. $\Theta(n^2)$ array accesses.

Bottom line. Mathematical model explains and supports empirical experiments.

provides exponent in power law (but not leading coefficient)

Estimate running time as a function of n?

- **A.** $\Theta(n)$
- $\mathbf{B.} \quad \mathbf{\Theta}(n^2)$
- C. $\Theta(n^3)$
- $\mathbf{D.} \quad \Theta(n^4)$

Key questions and answers

- Q. Does the running time of my program approximately obey a power law?
- A. Probably yes. Might also have a log n factor.
- Q. How do you know?
- A1. Computer scientists have observed power laws for many many specific algorithms.
- A2. Program built from simple constructors (statements, loops, nesting, function calls).

Ex. Logarithmic running time.

```
int count = 0;
for (int i = 1; i <= n; i = i*2)
    count++;</pre>
```

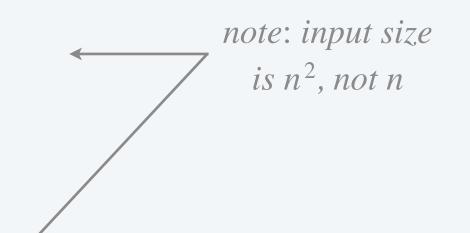
code fragment takes $\Theta(\log n)$ time

Common order-of-growth classifications

order of growth	emoji	name	typical code framework	description	example	T(2n) / T(n)
$\Theta(1)$		constant	a = b + c;	statement	add two numbers	1
$\Theta(\log n)$		logarithmic	for (int i = n; i >= 1; i /= 2) { }	divide in half	binary search	~ 1
$\Theta(n)$		linear	for (int i = 0; i < n; i++) { }	single loop	find the maximum	2
$\Theta(n \log n)$		linearithmic	mergesort (stay tuned)	divide and conquer	mergesort	~ 2
$\Theta(n^2)$		quadratic	for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { }	double loop	check all pairs	4
$\Theta(n^3)$		cubic	<pre>for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++)</pre>	triple loop	check all triples	8
$\Theta(2^n)$	T.	exponential	towers of Hanoi	exhaustive search	check all subsets	2^n

Examples of order-of-growth

computation	implementation	order of growth
dot product	<pre>double sum = 0.0; for (int i = 0; i < n; i++) sum += a[i] * b[i];</pre>	$\Theta(n)$
matrix addition	<pre>for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) c[i][j] = a[i][j] + b[i][j];</pre>	$\Theta(n^2)$
matrix multiplication	<pre>for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) c[i][j] += a[i][k] * b[k][j];</pre>	$\Theta(n^3)$
ruler function	<pre>public static int ruler(int n) { if (n == 0) return " "; return ruler(n-1) + n + ruler(n-1); }</pre>	$\Theta(2^n)$



Analysis of algorithms: quiz 3

What is order of growth of the running time as a function of n? Hint: use array accesses as cost model.

```
int count = 0;
for (int i = 0; i < n; i++)
  for (int j = i+1; j < n; j++)
    for (int k = n; k >= 1; k = k/2)
      if (a[i] + a[j] >= a[k-1])
      count++;
```

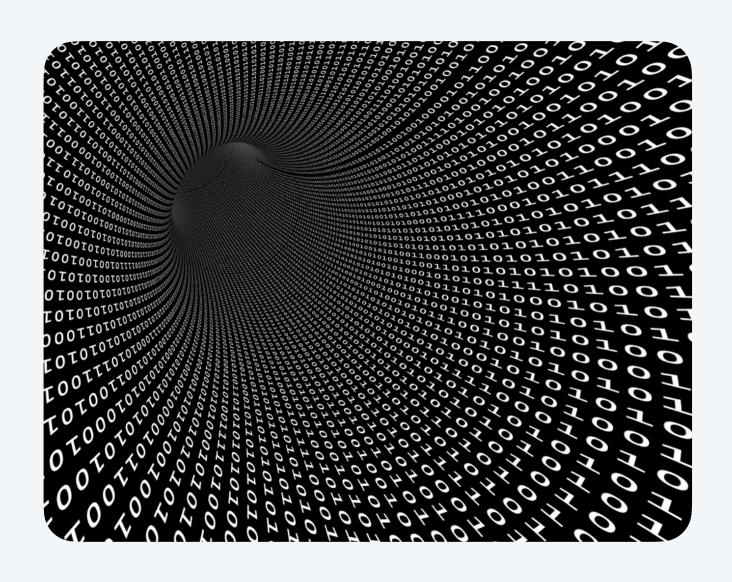
- $\mathbf{A.} \quad \Theta(n^2)$
- **B.** $\Theta(n^2 \log n)$
- C. $\Theta(n^3)$
- **D.** $\Theta(n^3 \log n)$

Memory basics

Bit (binary digit). 0 or 1.

Byte (8 bits). Smallest addressable unit of computer memory.

0	ON OFF		
1	ON OFF		



term	symbol	quantity
byte	В	8 bits
kilobyte	KB	1000 bytes
megabyte	MB	1000 ² bytes
gigabyte	GB	1000 ³ bytes
terabyte	TB	1000 ⁴ bytes
	some o	define using powers of
		$(MB = 2^{10} bytes)$

6 GB main memory, 1 TB internal storage

Typical memory usage in Java for primitive types and arrays

type	bytes	
boolean	1	
byte	1	
char	2	
int	4	32 bits
float	4	
long	8	
double	8	- 64 <i>bits</i>
String	n + 40 ←	ASCII string of length n
built-i	n types	

type	bytes	
boolean[]	1n + 24	
int[]	4n + 24	
double[]	8n + 24	— array overhead = 24 bytes

one-dimensional arrays (length n)

type	bytes
boolean[][]	$\sim 1 n^2$
int[][]	$\sim 4 n^2$
double[][]	$\sim 8 n^2$

two-dimensional arrays (n-by-n)

Analysis of algorithms: quiz 4

How much memory (in bytes) does result use as a function of n?

```
\sim 2n bytes
```

B. $\sim n^2$ bytes

C. $\sim 2n^2$ bytes

 $\sim 2^n$ bytes

```
public class Mystery {

public static String f(int n) {
   if (n == 0) return "";
   return f(n-1) + "*" + f(n-1);
}

public static void main(String[] args) {
   int n = Integer.parseInt(args[0]);
   String result = f(n);
   StdOut.println(result);
}
```

Turning the crank: summary

Running time analysis. Analyze running time T(n) as a function of input size n.

Empirical analysis.

- Run code on specific machine and inputs and measure running times.
- Formulate a hypothesis for running time.
- Enables us to make predictions.

Mathematical analysis.

- Analyze algorithm on abstract machine.
- Count frequency of dominant operations.

 ——

 use big-Theta notation to simplify analysis
- Enables us to explain behavior.

This course. Learn to use both.

Credits

media	source	license	
Charles Babbage	The Illustrated London News	public domain	
Babbage's Analytical Engine	xRez Studio		
Algorithm for the Analytical Engine	Ada Lovelace	public domain	
Ada Lovelace and Book	Moore Allen & Innocent		
MRI Machine	Adobe Stock	education license	
JPEG Compression	<u>Adobe</u>		
Noise Cancelling Headphones	Adobe Stock	education license	
5G Communication	Adobe Stock	education license	
Vibration Measurement	<u>Svantek</u>		
Programmer Icon	Jaime Botero	public domain	
Analog Stopwatch	Adobe Stock	education license	

Credits

media	source	license
Macbook Pro M2	<u>Apple</u>	
Vax 11/780	Digital Equipment Corp.	
Quantum Circuit	Adobe Stock	education license
Apple M2 Microprocessor	<u>Apple</u>	
Scientific Method	Sue Cahalane	by author
Laboratory Apparatus	pixabay.com	public domain
Dissected Rat	Allen Lew	<u>CC BY 2.0</u>
Tsar Bomba	Rosatom	
The Yoda of Silicon Valley	New York Times	
All Models are Wrong	<u>FreshSpectrum</u>	
Binary Tunnel	Adobe Stock	education license
iPhone 14 Pro Max	<u>Apple</u>	
Babbage's Analytical Engine	Science Museum, London	CC BY-SA 2.0

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne