
R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,  
they also are masters of exposition. I am sure that every serious computer scientist 

will find this book rewarding in many ways.     
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing  
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to 
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary 
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer 
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data 
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for 
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and 
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, 
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of 
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code 
n An all-new chapter introducing analytic combinatorics 
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them 
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of 
Computer Programming books—and provide the background they need to keep abreast of new research. 

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University, 
where was founding chair of the computer science department and has been a member of the faculty since 
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and  
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick 
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created  
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis 
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics; 
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over 
the world. Dr. Flajolet was a member of the French Academy of Sciences. 

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith 
Cover illustration by

     Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK 

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 2/23/25 2:22  PM

2.3  RECURSION

‣ foundations 
‣ a classic example 
‣ recursive graphics 
‣ exponential waste

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


2.3  RECURSION

‣ foundations 
‣ a classic example 
‣ recursive graphics 
‣ exponential waste

R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Overview

Recursion is when something is specified in terms of itself. 
 
 
Why learn recursion? 

・Represents a new mode of thinking. 

・Provides a powerful programming paradigm. 

・Reveals insight into the nature of computation. 
 
 
Many computational artifacts are naturally self-referential. 

・File system with folders containing folders.  

・Binary trees.  

・Fractal patterns. 

・Depth-first search. 

・Divide-and-conquer algorithms. 

・...
3



Recursive functions (in Java)

Recursive function.  A function that calls itself. 

・Base case: If the result can be computed directly, do so. 

・Reduction step: Otherwise, simplify by calling the function with one (or more) other arguments. 
 
Ex.  Factorial function: n !  =  n  ×  (n − 1)  × … ×  3  ×  2  ×  1. 

・Base case:  1!  =  1 

・Reduction step: n !  =  n  ×  (n − 1)!

4

public class Factorial { 

   public static int factorial(int n) { 
      if (n == 1) return 1; 
      return n * factorial(n-1); 
   } 

   public static void main(String[] args) { 
      int n = Integer.parseInt(args[0]); 
      int result = factorial(n); 
      StdOut.println(result); 
   } 
}

~/cos126/recursion> java-introcs Factorial 3 
6 

~/cos126/recursion> java-introcs Factorial 4 
24 

~/cos126/recursion> java-introcs Factorial 5 
120

recursive function

base case
reduction step

same function
with simpler argument



Review:  mechanics of a function call

1. Evaluate argument expressions and assign values to corresponding parameter variables. 
2. Save environment (values of all local variables and call location). 
3. Transfer control to the function. 
4. Restore environment (with function-call expression evaluating to return value). 
5. Transfer control back to the calling code.  

5

public static void main(String[] args) { 

   int a = 100; 

   int b = 26; 

   int max = Math.max(a, 4*b); 

   ... 

}

public static int max(int x, int y) { 

   if (x >= y) return x; 

   return y; 

}
parameter
variables

variable value

a 100

b 26

max 104 variable value

x 100

y 104

argument values

return value

104

100 104

argument
expressions

function-call
expression



Function-call trace

Function-call trace. 

・Print name and arguments when each function is called. 

・Print function’s return value just before returning. 

・Add indentation on function calls and subtract on returns.

6

factorial(5) 
    factorial(4) 
        factorial(3) 
            factorial(2) 
                factorial(1) 
                    return 1 
                return 2 * 1 = 2 
            return 3 * 2 = 6 
        return 4 * 6 = 24 
    return 5 * 24 = 120

function-call trace for factorial(5)

public static int factorial(int n) { 
   if (n == 1) return 1; 
   return n * factorial(n-1); 
}



Factorial function demo

7

public static void main(String[] args) { 
   int n = Integer.parseInt(args[0]); 
   int result = factorial(n); 
   StdOut.println(result); 
}}

main()

variable value

n 3

result

public static int factorial(int n) { 
   if (n == 1) return 1; 
   return n * factorial(n-1); 
}}

factorial(3)

variable value

n 3

public static int factorial(int n) { 
   if (n == 1) return 1; 
   return n * factorial(n-1); 
}}

factorial(2)

variable value

n 2

public static int factorial(int n) { 
   if (n == 1) return 1; 
   return n * factorial(n-1); 
}

factorial(1)

variable value

n 1



Stack overflow errors

8

bug buggy code error error message

public static int bad1(int n) { 
   return n * bad1(n-1); 
}

missing
base case

~/cos126/recursion> java-introcs Bug1 10 
Exception in thread "main" 
java.lang.StackOverflowError 
   at Bug1.java:4 
   at Bug1.java:4 
   at Bug1.java:4 
   at Bug1.java:4 
   ...

public static int bad2(int n) { 
   if (n == 0) return 1; 
   return n * bad2(n + 1); 
}

reduction step
does not converge

to base case

~/cos126/recursion> java-introcs Bug2 10 
Exception in thread "main" 
java.lang.StackOverflowError 
   at Bug2.java:4 
   at Bug2.java:4 
   at Bug2.java:4 
   at Bug2.java:4 
   ...



Problems with recursion?

9

https://www.smbc-comics.com https://www.safelyendangered.com/comic/oh-bother

http://www.safelyendangered.com/comic/oh-bother/
https://www.smbc-comics.com/comic/recursion
https://www.smbc-comics.com/comic/recursion


Recursion:  quiz 1

What is printed by a call to collatz(6) ?  

A.  6 3 10 5 16 8 4 2 1

B.  1 2 4 8 16 5 10 3 6

C.  2 4 8 16 5 10 3 6

D.  6 3 1

E.  stack overflow error

10

public static void collatz(int n) { 
   StdOut.print(n + " "); 
   if (n == 1) return; 
   if (n % 2 == 0) collatz(n / 2); 
   else collatz(3*n + 1); 
}

integer division

collatz(6) 
  print 6 
  collatz(3) 
    print 3 
    collatz(10) 
      print 10 
      collatz(5) 
        print 5 
        collatz(16) 
          print 16 
          collatz(8) 
            print 8 
            collatz(4) 
              print 4 
              collatz(2) 
                print 2 
                collatz(1) 
                  print 1

function-call trace of collatz(6)



Collatz sequence

Famous unsolved problem.  Does collatz(n) terminate for all n ≥ 1 ? 
Partial answer.  Yes, for all 1  ≤  n  ≤  268.

11

assume no arithmetic overflow

https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/


2.3  RECURSION

‣ foundations 
‣ a classic example 
‣ recursive graphics 
‣ exponential waste

R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Warmup:  ruler function

Goal.  Function ruler(n) that returns first 2n − 1 values of ruler function. 

・Base case:  empty for n = 0. 

・Reduction step:  sandwich n between two copies of ruler(n-1).

13

public class Ruler { 

   public static String ruler(int n) { 
      if (n == 0) return " "; 
      return ruler(n-1) + n + ruler(n-1); 
   } 

   public static void main(String[] args) { 
      int n = Integer.parseInt(args[0]); 
      String result = ruler(n); 
      StdOut.println(result); 
   } 
}

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

~/cos126/recursion> java-introcs Ruler 1 
 1 

~/cos126/recursion> java-introcs Ruler 2 
 1 2 1 

~/cos126/recursion> java-introcs Ruler 3 
 1 2 1 3 1 2 1 

~/cos126/recursion> java-introcs Ruler 4 
 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

base case
reduction step

ruler(4)



Draw the function-call tree. 

・One node for each function call. 

・Label node with return value after children are labeled.

ruler(0)

ruler(1)

Tracing a recursive program

14

ruler(2)  1 2 1

1 1

ruler(3)  1 2 1 3 1 2 1

ruler(4)  1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

1 1

 1 2 1

1 1

 1 2 1

1 1

 1 2 1

 1 2 1 3 1 2 1

function-call tree for ruler(4)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Towers of Hanoi puzzle

A legend of uncertain origin. 

・n = 64 disks of differing size; 3 poles; stacked on middle pole, from largest to smallest. 

・An ancient prophecy has commanded monks to move the disks to another pole. 

・When the task is completed, the world will end. 
 
Rules. 

・Can move only one disk at a time. 

・Cannot put a larger disk on top of a smaller disk. 
 
 
Q1.  How to generate a list of instruction for monks. 
Q2.  When might the world end?

15

n = 10 

start

goal



Towers of Hanoi solution

For instructions, use cyclic wraparound. 

・Move right means   

・Move left means 
 
 
 
 
 
 
A recursive solution.  [to move stack of n disks to the right] 

・Base case:  if n = 0 disks, do nothing. 

・Reduction step:  otherwise, 

・move n − 1 smallest disks to the left (recursively) 

・move largest disk to the right 

・move n − 1 smallest disks to the left (recursively)

16

0 1 2

1 to 2, 2 to 3, or 3 to 1.
1 to 3, 3 to 2, or 2 to 1.

1 2 3

analogous to moving stack
of n disks to the right



Towers of Hanoi solution (n = 3)

Notation.  Label disks from smallest (1) to largest (n).

17

1R

3

2

1

2L

1R

3R

1R

2L

1R

1R 2L 1R 3R 1R 2L 1R



Towers of Hanoi:  mutually recursive solution

Goal.  Function hanoiRight(n) that returns instructions for n disk puzzle. 

・Base case:  if n = 0 disks, do nothing. 

・Reduction step:  otherwise, sandwich moving disk n right 
                          between two calls to hanoiLeft(n-1)

18

public class Hanoi { 

   public static String hanoiRight(int n) { 
      if (n == 0) return " "; 
      return hanoiLeft(n-1) + n + "R" + hanoiLeft(n-1); 
   } 

   public static String hanoiLeft(int n) { 
      if (n == 0) return " "; 
      return hanoiRight(n-1) + n + "L" + hanoiRight(n-1); 
   } 
    
   public static void main(String[] args) { 
      int n = Integer.parseInt(args[0]); 
      StdOut.println(hanoiRight(n)); 
   } 
}

~/cos126/recursion> java-introcs Hanoi 3 
 1R 2L 1R 3R 1R 2L 1R 

~/cos126/recursion> java-introcs Hanoi 4 
 1L 2R 1L 3L 1L 2R 1L 4R 1L 2R 1L 3L 1L 2R 1L

move stack of
n disks right

concise but tricky code; read carefully!

move stack of
n disks left

and also a similar function hanoiLeft(n)



Properties. 

・Each disk always moves in the same direction. 

・Moving smallest disk always alternates with (unique legal) move not involving smallest disk. 

・Solution to puzzle with n disks makes 2n − 1 moves.

hanoiRight(0)

hanoiLeft(1)

Function-call tree for towers of Hanoi

19

hanoiRight(2)

 1 2 1 
 L R L

1 
L

1 
L

hanoiLeft(3)

 1 2 1 3 1 2 1 
 L R L L L R L

hanoiRight(4)

 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 
 L R L L L R L R L R L L L R L

1 
L

1 
L

 1 2 1 
 L R L

1 
L

1 
L

 1 2 1 
 L R L

1 
L

1 
L

 1 2 1 
 L R L

 1 2 1 3 1 2 1 
 L R L L L R L

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Q.  How to generate instructions for monks? 
A1.  [long form] 1L 2R 1L 3L 1L 2R 1L 4R 1L 2R 1L 3L 1L 2R 1L 5L 1L 2R 1L 3L 1L 2R 1L 4R … 
A2.  [short form] Alternate 1L with the only legal move not involving disk 1. 
 
 
 
Q.  When might the world end? 
A.  Not soon. Takes  moves.264 − 1

Answers for towers of Hanoi

20

recursive solution
provably uses fewest moves

if n is odd,
alternate 1R



Recursion vs. iteration

Fact 1.  Any recursive program can be rewritten with loops (and no recursion). 
Fact 2.  Any program with loops can be rewritten with recursion (and no loops). 
 
 
 
 
 
 
 
 
 
Q.    When should I use recursion? 
A1.  The problem is naturally recursive (e.g., towers of Hanoi). 
A2.  The data is naturally recursive (e.g., filesystem with folders).

21

loops recursion

more memory efficient
(no function-call stack) concise and elegant code

easier to trace code
(fewer variables)

easier to reason about code
(fewer mutable variables)



2.3  RECURSION

‣ foundations 
‣ a classic example 
‣ recursive graphics 
‣ exponential waste

R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Recursive graphics in the wild

23



H-tree of order n. 

・Base case:  if n is 0, draw nothing. 

・Reduction step: 
– draw an H 
– draw four H-trees of order n − 1 and half the size, centered at the four tips of the H 

“Hello, World” of recursive graphics:  H-trees

24

order 1 order 2 order 3



Application.  Connect a large set of regularly spaced sites to a single source. 

H-trees

25



public class Htree { 
 
   public static void draw(int n, double size, double x, double y) { 
      if (n == 0) return; 

      double x0 = x - size/2, x1 = x + size/2; 
      double y0 = y - size/2, y1 = y + size/2; 

      StdDraw.line(x0,  y, x1,  y); 
      StdDraw.line(x0, y0, x0, y1); 
      StdDraw.line(x1, y0, x1, y1); 

      draw(n-1, size/2, x0, y0);    // lower left       
      draw(n-1, size/2, x0, y1);    // upper left 
      draw(n-1, size/2, x1, y0);    // lower right 
      draw(n-1, size/2, x1, y1);    // upper right 
   } 

   public static void main(String[] args) { 
      StdDraw.setPenRadius(0.005);       
      int n = Integer.parseInt(args[0]); 
      draw(n, 0.5, 0.5, 0.5); 
   } 
}

Recursive H-tree implementation

26

y 0

y 1

x0 x1

y

x

size

~/cos126/recursion> java-introcs Htree 1 

draw the H
(non-recursive)

draw four half-
size H-trees
(recursively)

endpoints

~/cos126/recursion> java-introcs Htree 2~/cos126/recursion> java-introcs Htree 3~/cos126/recursion> java-introcs Htree 4~/cos126/recursion> java-introcs Htree 5

H-tree of order n,
centered at (0.5, 0.5)



Recursion:  quiz 2

Suppose that Htree (with n = 4)  
is stopped after drawing the 30th H.
Which drawing will result? 

27

C.  B.  A.   D.  



Super H-tree implementation

Q.  What will happen if we add the following statements to draw(), just before the recursive calls? 

28

double freq = Synth.midiToFrequency(n + 45); 
double duration = 0.25 * n; 
double[] a = Synth.supersaw(freq, duration); 
StdAudio.play(a);

~/cos126/recursion> java-introcs SuperHtree 4 

 



Recursive art (spring 2024)

29

flashing images



2.3  RECURSION

‣ foundations 
‣ a classic example 
‣ recursive graphics 
‣ exponential waste

R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Fibonacci numbers.  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,  …

Fibonacci numbers

31

Leonardo Fibonacci

3 5 13

21 34

8

55 89



Fibonacci numbers:  recursive approach

Fibonacci numbers.  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,  …
 
 
 
 
Goal.  Given n, compute Fn. 
 
Recursive approach. 

・Base cases:    F0  =  0,   F1 = 1. 

・Reduction step:  Fn  =  Fn−1  + Fn−2  .

32

<latexit sha1_base64="7NCyqLvzWklrIfq2i0QQ9DV01Ig=">AAACsHicbVFda9swFJW9ry77SrPH7uGysDIYC1bY2sLYKAzKHjtY2kAcjCxfp2plyUjySDB+3X/cf9iPmJx4sKS9IDicc3Sv7lFaSmFdFP0Ownv3Hzx8tPe49+Tps+cv+vuDC6srw3HCtdRmmjKLUiicOOEkTkuDrEglXqY3X1v98icaK7T64VYlzgu2UCIXnDlPJf1fZ4mCzxCnuBCq5r6TbXrxJ4jgMC5SvaxFDg14onVFEMfQqvQulf5Tz5JavacNvNugcQOHsGv/ArQXo8q6kUl/GI2idcFtQDswJF2dJ/vBIM40rwpUjktm7YxGpZvXzDjBJfodKosl4zdsgTMPFSvQzut1YA288UwGuTb+KAdr9v8bNSusXRWpdxbMXdldrSXv0maVy0/mtVBl5VDxzaC8kuA0tOlDJgxyJ1ceMG6EfyvwK2YYd/6Ptqase5fItzapl5USXGe4w0q3dIa1KdLdzG6Di/GIHo0+fv8wPD3p8twjB+Q1eUsoOSan5Bs5JxPCyZ9gEBwEr8JxOA2TkG2sYdDdeUm2Krz+C+S5zMA=</latexit>

Fn =

8
><

>:

0 B7 n = 0

1 B7 n = 1

Fn�1 + Fn�2 B7 n > 1

<latexit sha1_base64="7NCyqLvzWklrIfq2i0QQ9DV01Ig=">AAACsHicbVFda9swFJW9ry77SrPH7uGysDIYC1bY2sLYKAzKHjtY2kAcjCxfp2plyUjySDB+3X/cf9iPmJx4sKS9IDicc3Sv7lFaSmFdFP0Ownv3Hzx8tPe49+Tps+cv+vuDC6srw3HCtdRmmjKLUiicOOEkTkuDrEglXqY3X1v98icaK7T64VYlzgu2UCIXnDlPJf1fZ4mCzxCnuBCq5r6TbXrxJ4jgMC5SvaxFDg14onVFEMfQqvQulf5Tz5JavacNvNugcQOHsGv/ArQXo8q6kUl/GI2idcFtQDswJF2dJ/vBIM40rwpUjktm7YxGpZvXzDjBJfodKosl4zdsgTMPFSvQzut1YA288UwGuTb+KAdr9v8bNSusXRWpdxbMXdldrSXv0maVy0/mtVBl5VDxzaC8kuA0tOlDJgxyJ1ceMG6EfyvwK2YYd/6Ptqase5fItzapl5USXGe4w0q3dIa1KdLdzG6Di/GIHo0+fv8wPD3p8twjB+Q1eUsoOSan5Bs5JxPCyZ9gEBwEr8JxOA2TkG2sYdDdeUm2Krz+C+S5zMA=</latexit>

Fn =

8
><

>:

0 B7 n = 0

1 B7 n = 1

Fn�1 + Fn�2 B7 n > 1

public static long fib(int n) { 
   if (n == 0) return 0; 
   if (n == 1) return 1; 
   return fib(n-1) + fib(n-2); 
}



Recursion:  quiz 3

How long dose it take to compute fib(80) ? 

A.  Much less than 1 second. 

B.  About 1 second. 

C.  About 1 minute. 

D.  About 1 hour. 

E.  More than 1 hour.

33

~/cos126/recursion> java-introcs Fibonacci 10 
55 

~/cos126/recursion> java-introcs Fibonacci 20 
6765 

~/cos126/recursion> java-introcs Fibonacci 30 
832040 

~/cos126/recursion> java-introcs Fibonacci 40 
102334155 

~/cos126/recursion> java-introcs Fibonacci 50 
12586269025 
 
... 

~/cos126/recursion> java-introcs Fibonacci 80 
23416728348467685 
 takes about 3 years (!!!)

takes about 1 minute (!)
public static long fib(int n) { 
   if (n == 0) return 0; 
   if (n == 1) return 1; 
   return fib(n-1) + fib(n-2); 
}



Recursion tree for Fibonacci numbers

Recursion tree. 

・One node for each recursive call. 

・Label node with return value after children are labelled.

34

0

1 1

0

1 1

0

1

0

1 1

0

1

fib(6)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

1

2

1 1

2

3

5

1 1

2

3

8



Exponential waste

Exponential waste.  Same overlapping subproblems are solved repeatedly. 

・ fib(5) is called 1 time. 

・ fib(4) is called 2 times. 

・ fib(3) is called 3 times. 

・ fib(2) is called 5 times. 

・ fib(1) is called 8 times.

35

0

1

1

1

2

0

1

1

1

0

1

1

2

3

5

0

1

1

1

0

1

1

2

3

8

5

3 3

22 2

11 1 1 1

1 11 11 1 11

00 0 0 0

“overlapping subproblems”fib(6)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

number of recursive calls
are Fibonacci numbers

(and grow exponentially)



Recursion tree for Fibonacci numbers

36

0

1 1

0

1 1

0

1

0

1 1

0

1

fib(6)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

fib(0)

1

2

1 1

2

3

5

1 1

2

3

8

Exponential waste.  Same overlapping subproblems are solved repeatedly. 

・ fib(5) is called 1 time. 

・ fib(4) is called 2 times. 

・ fib(3) is called 3 times. 

・ fib(2) is called 5 times. 

・ fib(1) is called 8 times.

number of recursive calls
are Fibonacci numbers

(and grow exponentially)



Lesson.  If you engage in exponential waste, you will not be able to solve a large problem.

Exponential waste dwarfs progress in technology

37

n recursive
calls

VAX-11
(1970s)

MacBook Pro
(2020s)

30 2,692,536 minute

40 331,160,280 hours

50 40,730,022,146 weeks minute

60 5,009,461,563,920 years hours

70 616,123,042,340,256 centuries weeks

80 75,778,124,746,287,810 millenia years

90 9,320,093,220,751,060,616 ⋮ centuries

100 1,146,295,688,027,634,168,200 millenia

⋮ ⋮

time to compute fib(n) using recursive code

exponential growth (!)

VAX-11/780

Macbook Pro
(10,000× faster)



Avoiding exponential waste with memoization

Memoization. 

・Maintain an array to remember all computed values. 

・If value to compute is known, just return it; 

・otherwise, compute it; remember it; and return it. 
 
Impact.  Calls fibR(i) at most twice for each i. 
 
 
 
 
 
 
 
 
 
Design paradigm.  This is a simple example of memoization (top-down dynamic programming).

38

public class FibonacciMemo { 
   private static long[] memo; 

   public static long fib(int n) { 
      memo = new long[n+1]; 
      return fibR(n); 
   } 

   private static long fibR(int n) { 
      if (memo[n] != 0) return memo[n]; 
      if      (n == 0) memo[n] = 0; 
      else if (n == 1) memo[n] = 1; 
      else memo[n] = fibR(n-1) + fibR(n-2); 

      return memo[n]; 
   } 
 
   ... 
}

“global” variable

Fn  known

~/cos126/recursion> java-introcs FibonacciMemo 6 
8 

~/cos126/recursion> java-introcs FibonacciMemo 80 
23416728348467685 

instantaneous (!)

compute Fn  and
store in array

return stored value

initialize to all 0s
(not yet known)



Recursive function.  A function that calls itself. 
 
Why learn recursion? 

・Represents a new mode of thinking. 

・Provides a powerful programming paradigm. 

・Reveals insight into the nature of computation. 
 
Memoization.  A powerful technique to avoid exponential waste.

Summary

39

// Ackermann function 
public static long ack(long m, long n) { 
   if (m == 0) return n+1; 
   if (n == 0) return ack(m-1, 1); 
   return ack(m-1, ack(m, n-1)); 
}

challenge for bored:  compute ack(5, 2)

see also COS 226



Lecture Slides  © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Painting Hands Adobe Stock education license

Bugs Adobe Stock education license

Stack Overflow Logo Stack Overflow

Problems with Recursion Zach Weinersmith

You’re Eating Recursion Safely Endangered

Collatz Game Quanta magazine

File System with Folders Adobe Stock education license

Wooden Towers of Hanoi Adobe Stock education license

Towers of Hanoi Visualization Imaginative Animations

https://stock.adobe.com/images/painting-hands-photo-manipulation-inspired-by-the-artwork-of-m-c-escher-drawing-hands/215491054
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/set-of-graphical-hand-drawn-bugs-butterfly/493020240
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stackoverflow.design/brand/logo/
https://www.smbc-comics.com/comic/recursion
https://www.safelyendangered.com/comic/oh-bother/
https://www.quantamagazine.org/why-mathematicians-still-cant-solve-the-collatz-conjecture-20200922/
https://stock.adobe.com/images/file-system-or-filesystem-with-folders-and-directories-line-art-vector-icon-for-apps-and-websites/292092451
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/wooden-puzzle-tower-of-hanoi-with-color-rings-isolated-on-white-background-toy-for-kids/520422032
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.youtube.com/watch?v=9Mg0wROAdfU


Lecture Slides  © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Droste Cocoa Droste

Recursive Giraffe Farley Katz

Circle Limit IV M.C. Escher

Recursive Mona Lisa Mr. Rallentando

Recursive New York Times Serkan Ozkaya

Leonardo Fibonacci Wikimedia public domain

VAX 11/780 Digital Equipment Corporation

Macbook Pro M1 Apple

Menger Sponge Niabot CC BY 3.0

https://www.amazon.com/Droste-4-pack-Cocoa-Holland/dp/B00CWFDEEA
https://www.newyorker.com/magazine/2008/08/11/running-to-beijing
https://www.wikiart.org/en/m-c-escher/circle-limit-iv
http://www.megamonalisa.com/recursion/
https://www.nytimes.com/2006/12/15/arts/design/15serk.html
https://commons.wikimedia.org/wiki/File:Fibonacci5.jpg
https://en.wikipedia.org/wiki/Public_domain
https://ftp.arl.army.mil/ftp/historic-computers/
https://www.apple.com/shop/refurbished/mac/macbook-pro
https://commons.wikimedia.org/wiki/File:Menger-Schwamm-farbig.png
https://creativecommons.org/licenses/by/3.0/

