Distributed Systems Intro

COS 418/518: Distributed Systems
Lecture 1
Spring 2024

Mike Freedman, Wyatt Lloyd

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?
* Or, why not 1 computer to rule them all?
* Failure

* Limited computation/storage/...

* Physical location

Distributed Systems, Where?

» Web Search (e.g., Google, Bing)

» Shopping (e.g., Amazon, Walmart)

* File Sync (e.g., Dropbox, iCloud)

« Social Networks (e.g., Facebook, Twitter)
* Music (e.g., Spotify, Apple Music)

* Ride Sharing (e.g., Uber, Lyft)

« Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, DOTA2)

2/3/24

“The Cloud” is not amorphous

2/3/24

2/3/24

2/3/24

: Everything changes at scale
100,000s of physical servers

#0s MW energy copsumption

\M | 7 Eacebook Prin;’ev,ilzlez'

= 1$250M physical infro, $1B IT infrdl
£ 40

“Pods provide 7.68Tbps to backplane”

14
Distributed Systems Goal Scalable Systems in this Class
« Service with higher—level abstractions/interface * Scale computation across many machines
* e.g,, file system, database, key-value store, programming model, ... « MapReduce, Streaming Video Engine
* Hide complexity + Scale storage across many machines
» Scalable (scale-out) . Dynamo, COPS, Spanner
* Reliable (fault-tolerant)
» Well-defined semantics (consistent)
» Do “heavy lifting” so app developer doesn’t need to
15 16

Fault Tolerant Systems in this Class

* Retry on another machine
» MapReduce, Streaming Video Engine

* Maintain replicas on multiple machines

 Primary-backup replication
« Paxos

* RAFT

« Bayou

» Dynamo, COPS, Spanner

Range of Abstractions and Guarantees

+ Eventual Consistency

* Dynamo

+ Causal Consistency
» Bayou, COPS

* Linearizability

» Paxos, RAFT, Primary-backup replication

« Strict Serializability
* 2PL, Spanner

17

18

Learning Objectives

* Reasoning about concurrency
* Reasoning about failure
* Reasoning about performance

* Building systems that correctly handle concurrency and failure

» Knowing specific system designs and design components

19

Research results matter: NoSQL

Distribut

David K|

Dynamo: A 's Highly il Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Wemer Vogels
Amazon.com

G ‘erms
Algorthins, Management, Measuremen, Pecformance, Design,
Reliabiiy.

20

2/3/24

Research results matter: Paxos

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

Abstract ‘example, the Google File System (7] uses a Chubby lock
10 appoint a GFS master server, and Bigtable [3] uses
Chubby in several ways: 1o clect a maste, t allow the
‘master to discover the servers it controls, and to permit
clients o0 find the master. In addition, both GFS and
Bigtable use Chubby as a well-known and available loca-
tion 10 store a small amount of meta-dats; in effect they
use Chubby as the oot of their distributed data struc:
tures. Some services use locks o partition work (st &
coarse grin) between several servers.
Before Chubby was deployed, most distributed sys-
tems at Google used ad hoc methods for primary elec-

We describe our expericnces with the Chubby lock ser-
vice, which is intended o provide coarse-grained lock-
ing as well as reliable (though low-volume) storage for
a loosely-coupled distributed system. Chubby provides
an interface much like a distributed file system with ad-
visory locks, but the design emphasis is on availability
and reliabilty, as opposed o high performance. Many
instances of the service have been used for over a year,
with several of them each handling a fow tens of thou-
sands of clients concurrently. The paper describes the
jnitial design and cxpecied use, comparcs it with actual

21

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

[T ——

Google, Inc

Abstract

ipReduce s a programming model and an associ
sted implementaton fo processing and generuing large
data set. Users speciy a map function that processes a
Keyaluepai o gencrste et of itermediat keyvalue

given day, tc. Mot such computaions ar conceptu-
aly saightforward. However,te input data is usually
Large and the compotation have to be distrbuted across
bundreds or thousaads of machines in order to finish in

a reasonable amout of t issues of bow 10 par-
allcize the computation, distibue the data, and handle

Valuesassocited with the same intermediae key. Many
eal world asks e cxpressble in this model, a5 shown
in the paper

filues conpi ginal simpl compu
ation with large amounts of complex code o deal with
thes isuer.

As reacton to this complxity, we designed a new.

modity machines. The run-ime system akes cae ofthe
detil o partitoning the input dat, scheduling the pro-

tais of paralcizaton, fault tolerance, daa disrbution
and load balancing in a fbrary. Our sbstraction is in-

hine fil

spird by t

and many other functional I We realized hat

without any
experience with paralie and distrbuted sstems o cas
il wilize th resourcesof a arge distributed system.
Our implementation of MapReduce runs on a large
cluser of commodity machines and is highly scalable:
 typical MapReduce computation processes many ter-

mostof imolved applying a map op-
eration 0 each logial “rocond” in our inpot in orde to
‘compute a set of ntermedise keyvaloe pair, and then
applying a reduce operaion o all the vaes that shared
the i order o combine the derved data 3p-
proprisely. Our use of a functonal model with user

Research results matter: MapReduce

ClErlEEp

distributed stream
computing platform

é)) STORM

Conclusion

* Distributed Systems
« Multiple machines doing something together
* Pretty much everywhere and everything computing now

» “Systems”
» Hide complexity and do the heavy lifting (i.e., interesting!)
« Scalability, fault tolerance, guarantees

23

22

2/3/24

