
COS 126 –
Atomic Theory of Matter

Questions

Raise your hand and ask
Ask on Ed

Project Context: 1827

■ No universal acceptance of the atomic
nature of matter

■ Botanist Robert Brown notices erratic
motion of pollen grains in water. This
motion is later called: Brownian motion

Project Context: 1905

■ Einstein publishes a revolutionary paper:
■ Brownian motion is caused by smaller

moving particles colliding with the larger
pollen grains.

■ Density of particles affects displacement in
Brownian motion

Project Context: 1908

■ Jean Baptist Perrin experimentally validated
Einstein’s theory and equations.

Project Context: 2023

■ Your Task: Redo Perrin’s experiments!
■ Not so difficult with computers and your

COS126 skills

Goal of the Assignment

■ Calculate Avogadro’s number
■ Using Einstein’s equations
■ Using fluorescent imaging

■ Input data
■ Sequence of images
■ Each image is a rectangle of pixels
■ Each pixel is either light or dark

■ Output
■ Estimate of Avogadro’s number

Atomic Theory Overview

■ Brownian Motion
■ Random collision of molecules
■ Displacement over time fits a Gaussian

distribution

Atomic Theory Overview

■ Avogadro’s Number
■ Number of atoms needed to equal

substance’s atomic mass in grams
■ NA atoms of Carbon-12 = 12 grams

■ Can calculate from Brownian Motion
■ Variance of Gaussian distribution is a function

of resistance in water, number of molecules

Experiment Overview

Record a video of
particles undergoing
Brownian motion

Experiment Overview

Convert the video into
a sequence of frames

Experiment Overview

Identify Beads in
every frame

Experiment Overview

Compare positions of
beads in every two
consecutive frames

Experiment Overview

Experiment Overview

Experiment Overview

Experiment Overview

Assignment: Four Programs
■ Blob.java

■ Represents a set of adjacent pixels.
■ BeadFinder.java

■ Detects all the Beads in a given image.
■ BeadTracker.java

■ Outputs displacements of beads over
consecutive frames.

■ Avogadro.java
■ Computes Avogadro’s number from a given set

of displacements.
■ readme.txt

■ Shows performance analysis.

Blob.java
■ API for representing particles (blobs) in water

■ public Blob()
■ public void add(int i, int j)
■ public int mass() // number of pixels
■ public double distanceTo(Blob b) // from center (average)
■ public String toString()

■ Only need three values to efficiently store
■ Do not store the positions of every pixel in the blob

Center of mass,
and # of pixels

Blob Challenges

■ Format numbers in a nice way
■ String.format("%2d (%8.4f, %8.4f)", mass, cx, cy);
■ (Use same format in System.out.printf())
■ E.g., "%6.3f" -> _2.354
■ E.g., "%10.4e" -> 1.2535e-23

■ Thoroughly test
■ Create a simple main()

Blobs and Beads

● Blob: Any group of
adjacent light pixels.
○ Not

● How many blobs are
there?

● Bead: A blob with a
number of pixels that is at
least min.

● How many beads are
there? (assume min=5)

BeadFinder.java
■ Locate all blobs in a given image

■ And identify large blobs (called beads)

■ API
■ public BeadFinder(Picture picture, double threshold)

■ Calculate luminance (see Luminance.java, 3.1)
■ Include pixels with a luminance >= threshold

■ Find blobs with DFS (see Percolation.java, 2.4)
■ The hard part, next slide…

■ public Blob[] getBeads(int minSize)
■ Returns all beads with at least minSize pixels
■ Array must be of size equal to number of beads

BeadFinder.java

BeadFinder: Original Image

BeadFinder: Applying Luminance
 Threshold tau

BeadFinder - Depth First Search
■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search
■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search

BeadFinder - Depth First Search
■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

■ Use boolean[][] array to mark visited
■ Traverse image pixel by pixel

■ Dark pixel
■ Mark as visited, continue

■ Light pixel
■ Create new blob, call DFS

■ DFS algorithm
■ Base case: simply return if

■ Pixel out-of-bounds
■ Pixel has been visited
■ Pixel is dark (and mark as visited)

■ Add pixel to current blob, mark as visited
■ Recursively visit up, down, left, and right neighbors

BeadFinder - Depth First Search

BeadFinder Challenges

■ Data structure for the collection of blobs
■ Store them any way you like
■ But be aware of memory use and timing

BeadFinder Challenges
■ Data structure for the collection of blobs

■ Store them any way you like
■ But be aware of memory use and timing

■ Array of blobs?
■ But how big should the array be?

■ Linked list of blobs?
■ Memory efficient, but harder to implement
■ Avoid traversing whole list to add a blob!

■ Anything else?
■ Submit your (extra) object classes

BeadTracker.java
■ Track beads between

successive images
■ Single main function

■ Take in a series of images
■ Output distance traversed by

all beads for each time-step
■ For each bead found at time t+1,

find closest bead at time t and
calculate distance

■ Not the other way around!
■ Don’t include if distance > 25

pixels (new bead)

BeadTracker Challenges

■ Reading multiple input files
■ java-introcs BeadTracker 25 180.0 25.0 run_1/*.jpg

■ Expands files in alphabetical order
■ End up as args[0], args[1], …

■ Avoiding running out of memory
■ How?

■ Recompiling
■ Recompile if Blob or BeadFinder change

BeadTracker Challenges

■ Reading multiple input files
■ java-introcs BeadTracker 25 180.0 25.0 run_1/*.jpg

■ Expands files in alphabetical order
■ End up as args[0], args[1], …

■ Avoiding running out of memory
■ Do not open all picture files at same time
■ Only two need to be open at a time

■ Recompiling
■ Recompile if Blob or BeadFinder change

Avogadro.java

■ Analyze Brownian motion of all
calculated displacements
■ Lots of crazy formulas, all given, pretty

straightforward
■ Be careful about units in the math, convert

pixels to meters, etc.

■ Can test without the other parts working
■ We provide sample input files
■ Can work on it while waiting for help

Conclusion: Final Tips

■ Avoiding subtle bugs in BeadFinder
■ Double check what happens at corner cases

(e.g. at boundary pixels, or when luminance
== tau, or mass == cutoff)

■ Common errors in BeadFinder
■ NullPointerException

■ StackOverflowError (e.g., if no base case)
■ No output (need to add print statements)

■ Look at Possible Progress Steps
■ Click ▶ to expand!

Conclusion: Final Tips
■ Avoid magic numbers

■ Define constants

■ No Checkstyle or other errors/warnings

■ Testing with a main()

■ There is a limit of twenty (20) times that you may

click the Check Submitted Files to receive feedback

from the TigerFile auto-grader

■ So, test locally! I.e., on your laptop before using

TigerFile to run test cases

Conclusion: Final Tips
■ Timing analysis - doubling method!
■ Wild cards

■ The frames use the following naming convention:
■ frame00000.jpg, frame00001.jpg …

frame00198.jpg, frame00199.jpg

■ On command line:
■ 10 frames? run_1/frame0000*.jpg
■ 20 frames? run_1/frame000[01]*.jpg
■ 40 frames? run_1/frame000[0123]*.jpg
■ 100 frames? run_1/frame000*.jpg
■ 200 frames? run_1/frame*.jpg
■ 400 frames? run_1/frame*.jpg run_1/frame*.jpg

Thank you

References

■ Prof. Ibrahim Albluwi
■ https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Robert_Brown_(botanist).jpg/220px-Robert_Brow

n_(botanist).jpg
■ https://cdn.miniphysics.com/wp-content/uploads/2011/01/brownianmotion.gif
■ https://upload.wikimedia.org/wikipedia/commons/d/d3/Albert_Einstein_Head.jpg
■ https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin#/media/File:Jean_Perrin_1926.jpg

