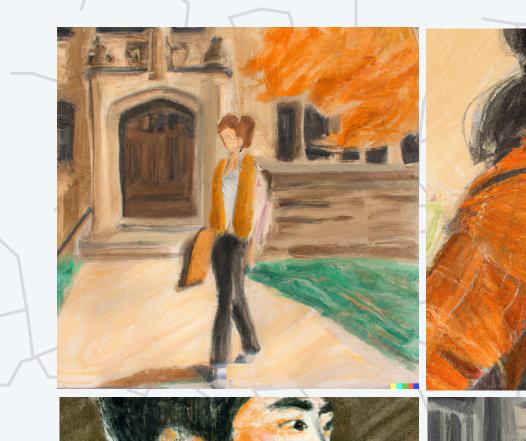
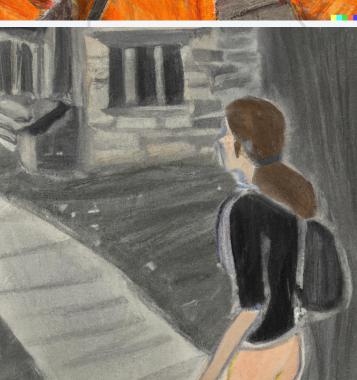
Please complete the mid-semester feedback survey (details on Ed)

Computer Science





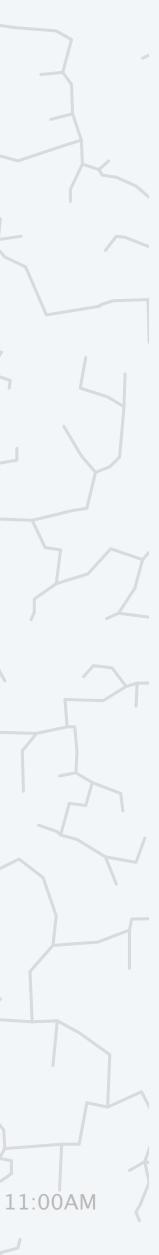
INTRODUCTION TO MACHINE LEARNING

 binary classifier multi-class classifier

pastel drawing of a student at Princeton, DALL · E 2

- what is machine learning?
- the perceptron algorithm

Last updated on 3/27/24 11:00AM

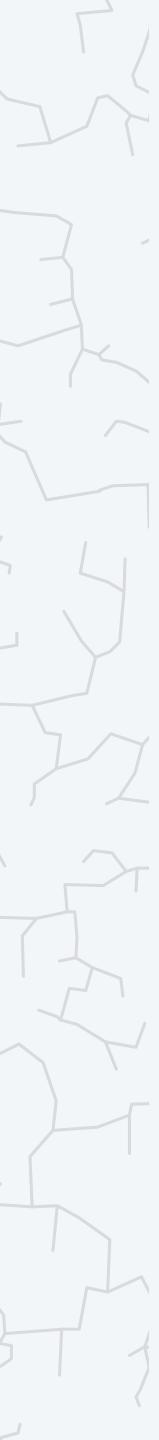


pastel drawing of a student at Princeton, DALL · E 2

INTRODUCTION TO MACHINE LEARNING

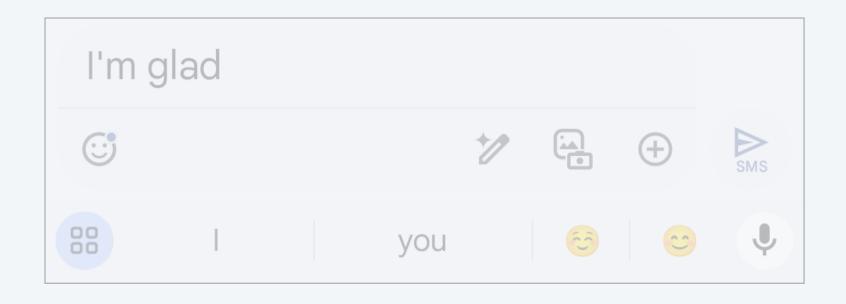
what is machine learning?

- binary classifier
- the perceptron algorithm
- multi-class classifier



Machine Learning Examples

Next word predictor



Length of stay predictor

Age	19	
HR	80	< 15 days in
RR	15	hospital
Temp	37	

Crop detector

Image generator

You

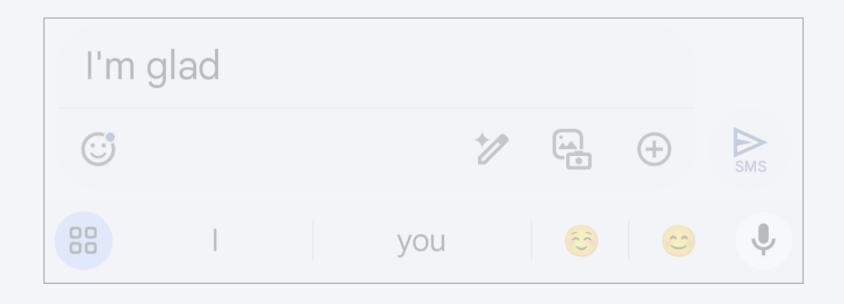
Tiger wearing a Princeton hat

Image Generator



Machine Learning Examples

Next word predictor



Length of stay classifier

Age	19	
HR	80	< 15 days in
RR	15	hospital
Temp	37	

Crop detector

ChatGPT

You

Can you suggest me some fun activities in Princeton, NJ?

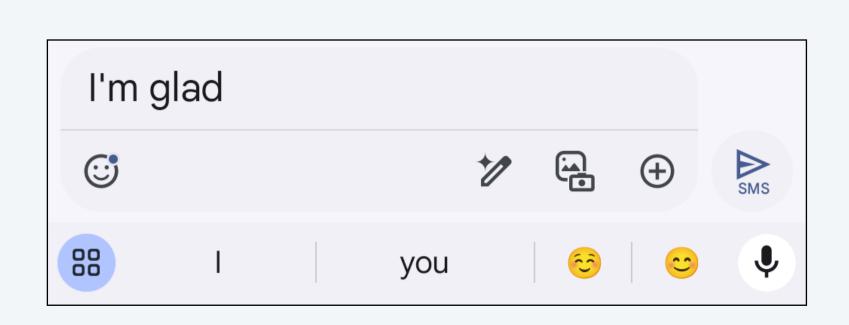
ChatGPT

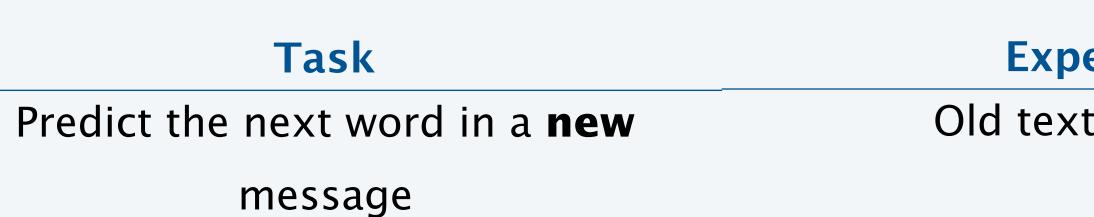
Princeton, NJ, offers a blend of historic charm, cultural richness, and educational excellence, making it a great place to explore fun activities. Here are some suggestions: ...

Machine Learning

A computer program learns if, for a defined task, it uses previous experience to improve a performance metric.

Next word predictor





Experience

Old text messages

Performance Metric

Fraction of words predicted correctly

Machine Learning

A computer program learns if, for a defined task, it uses previous experience to improve a performance metric.

Length of stay classifier

	[
Age	19
HR	80
RR	15
Temp	37

Task	Exp
Predict whether a new patient will	Data from p
have a long/short hospital stay	(vital signs -

perience

previous patients

Performance Metric Fraction of correct predictions

5 + length of stay)

Machine Learning

A computer program learns if, for a defined task, it uses previous experience to improve a performance metric.

Crop detector

Task

Detect crops in a **new** image

Previous images with bounding

Experience

Performance Metric

Fraction of crops identified

boxes

We wish to build a computer program that learns to grasp objects using a robotic gripper. What is an appropriate performance metric for this program?

Task	Exp
Grasp a new object from a box	800,000 rand

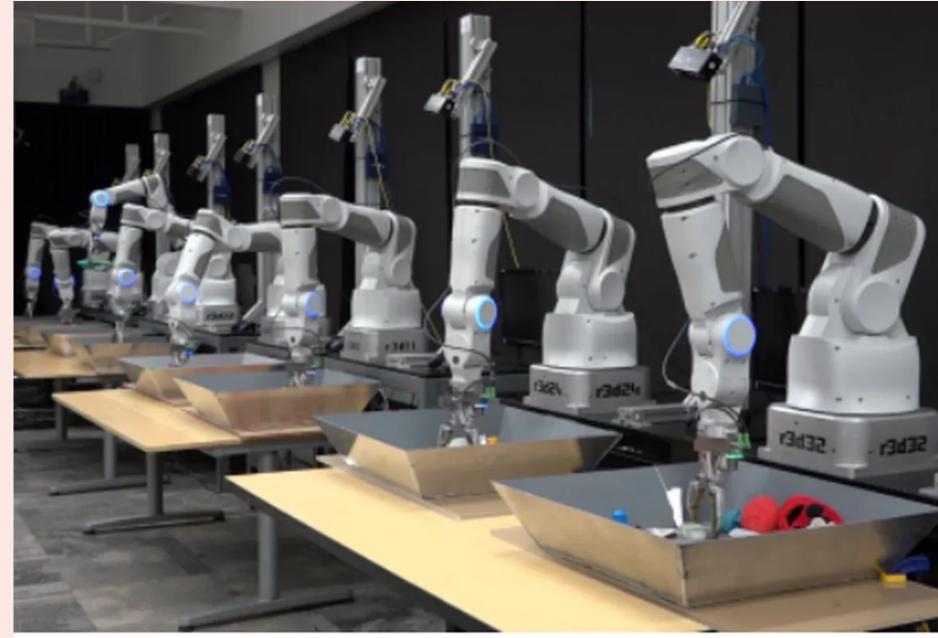
- A. Number of grasps until first success
- **B.** Speed of successful grasps
- **C.** Fraction of unsuccessful grasps
- **D.** None of the above

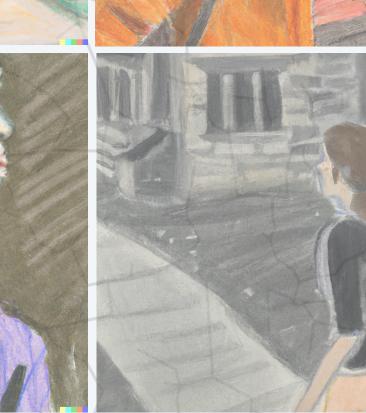
xperience

Performance Metric

?

dom grasp attempts





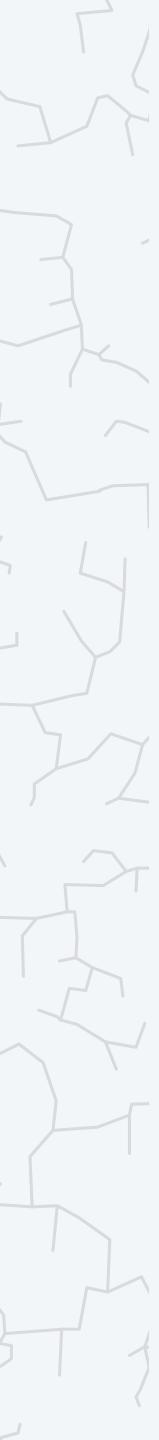
pastel drawing of a student at Princeton, DALL · E 2

INTRODUCTION TO MACHINE LEARNING

binary classifier

multi-class classifier

- what is machine learning?
- the perceptron algorithm



A binary classifier separates elements in a data set into one of two groups.

Task		Ex
Classify new data into on groups		evious data stay classi
	Age	19
	HR	80
	RR	15
	Temp	37
Code-switching detect	or	
La party last night was increíble, everyone danced hasta el amanecer.	Monolingua bilingual	

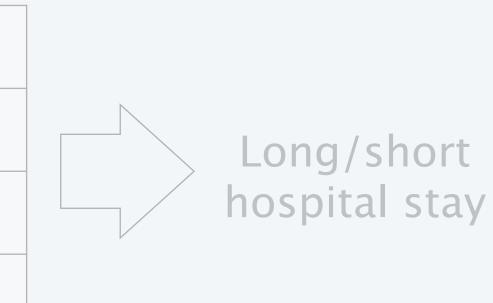
xperience

Performance Metric

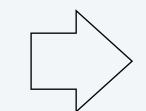
ta with group labels

Fraction of errors on **new** data

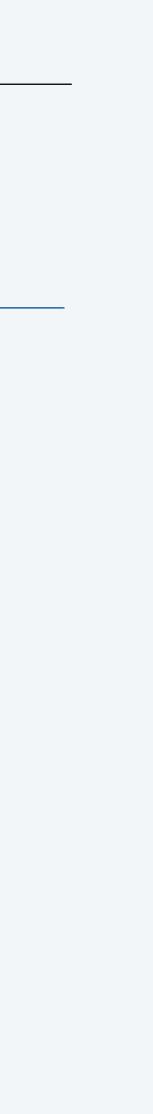
sifier



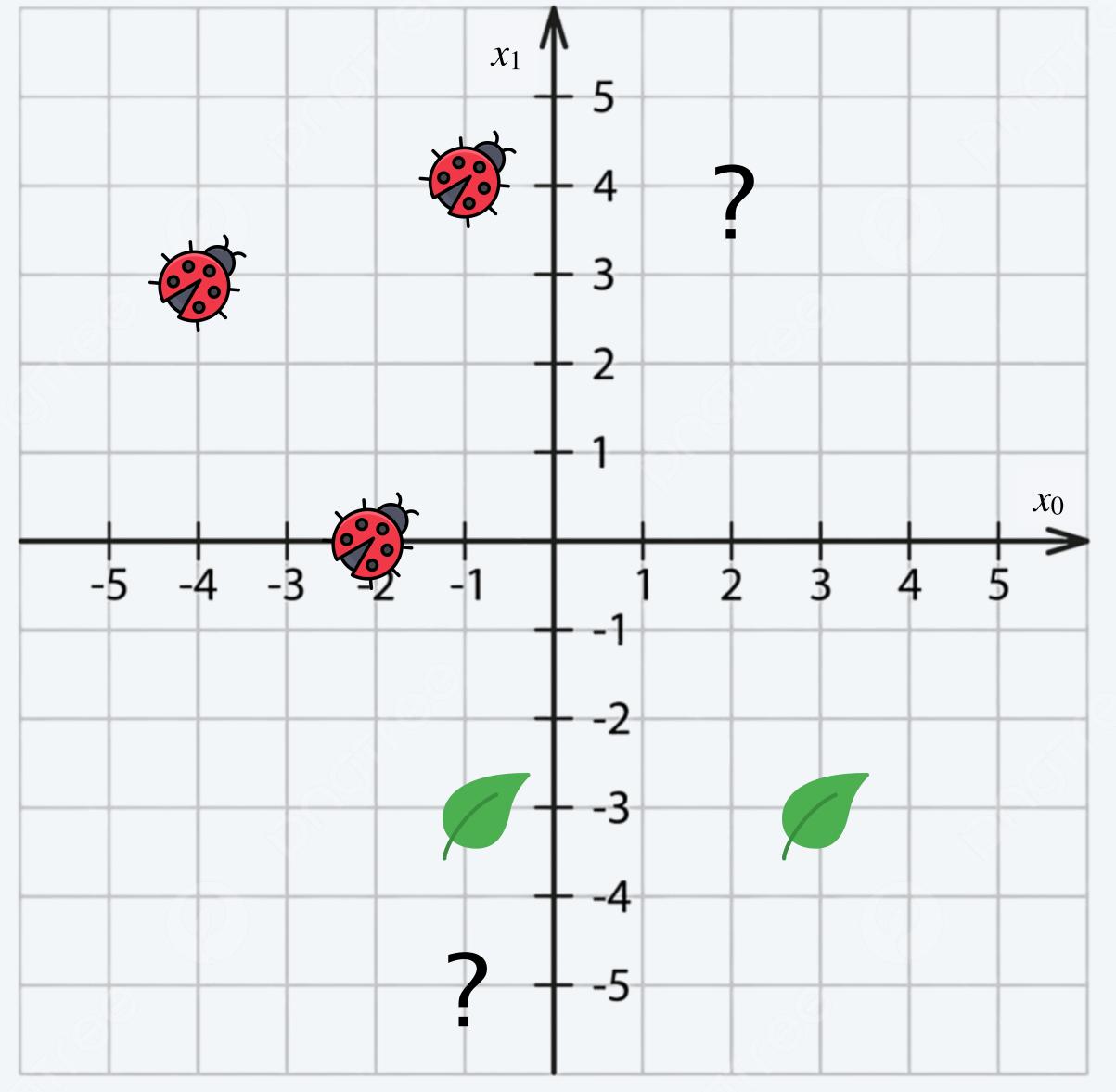
Deforestation classifier



Deforestation/ no deforestation

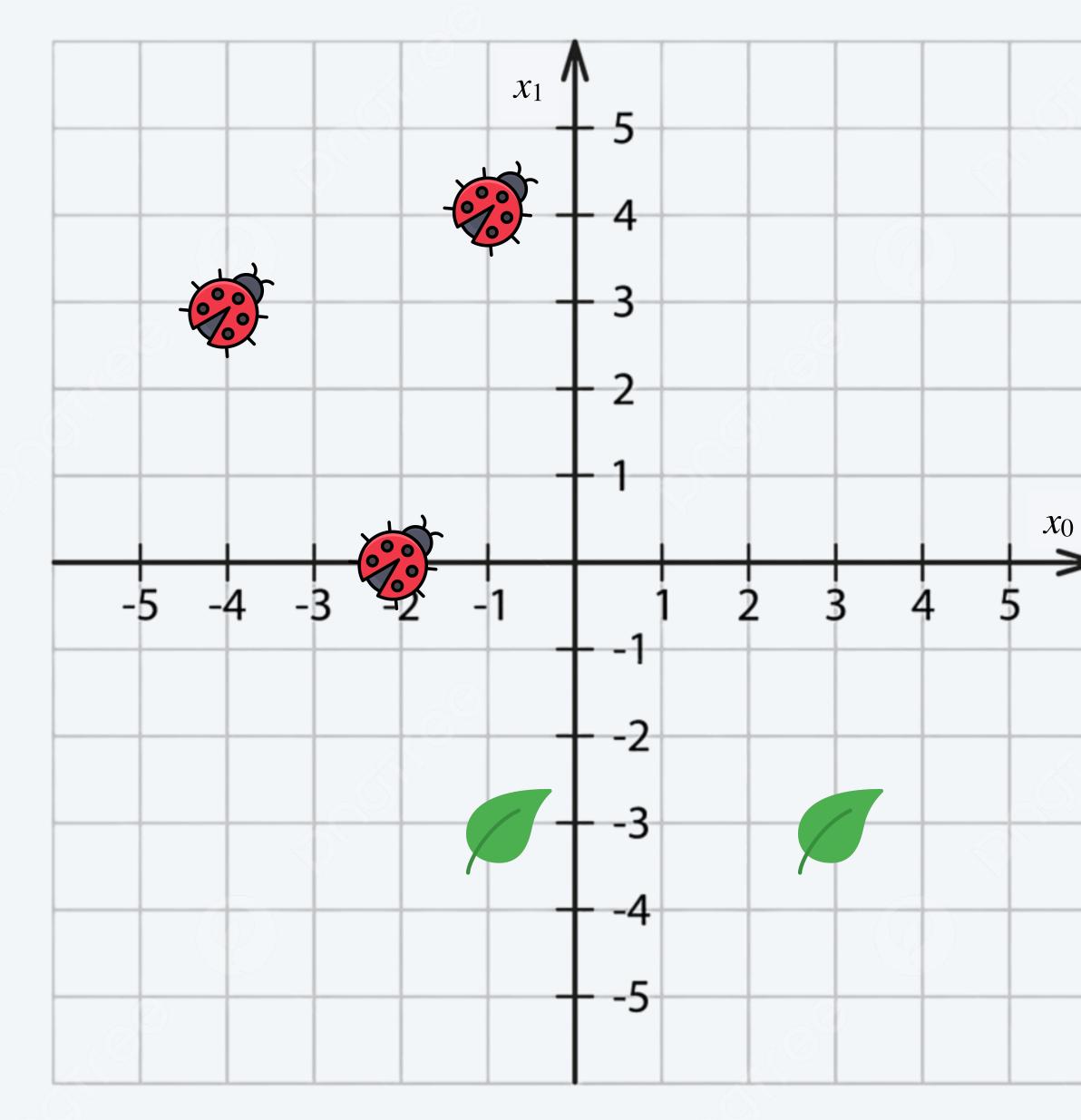


A simple binary classification problem



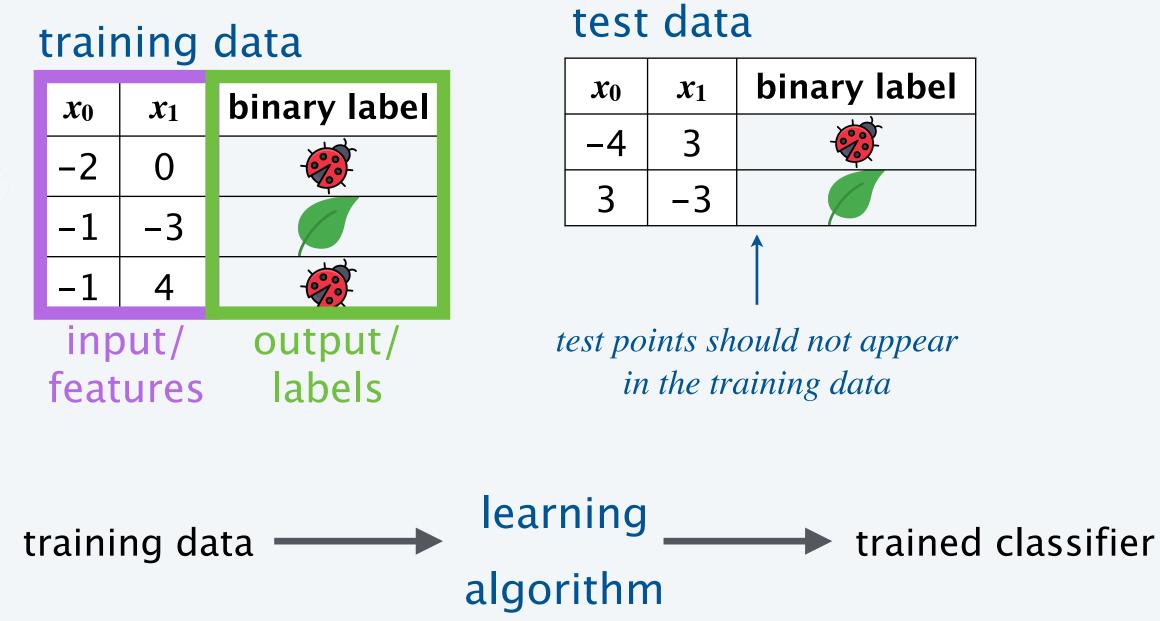
We want to know whether we have a ladybug or a leaf based on our position in the cartesian plane.

How to build a binary classifier



What do we need?

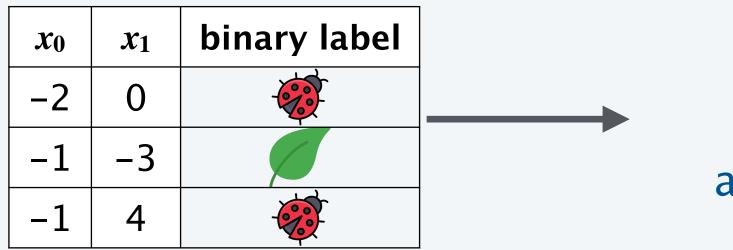
- Training data with binary labels to use as experience.
- Different test data with binary labels to evaluate our classifier.
- A learning algorithm that takes training data as input and returns a trained classifier.



How to build a binary classifier

Steps.

training data



2. **Testing:** Use the binary classifier and the test inputs to obtain predictions for each test data point.

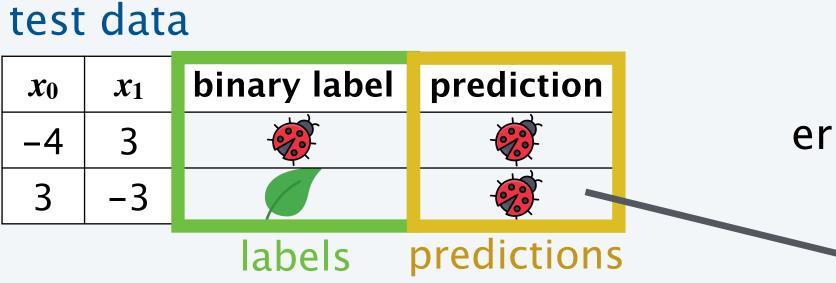
test data (inputs)

1. **Training:** Use the learning algorithm and the training set (inputs and outputs) to obtain the binary classifier.

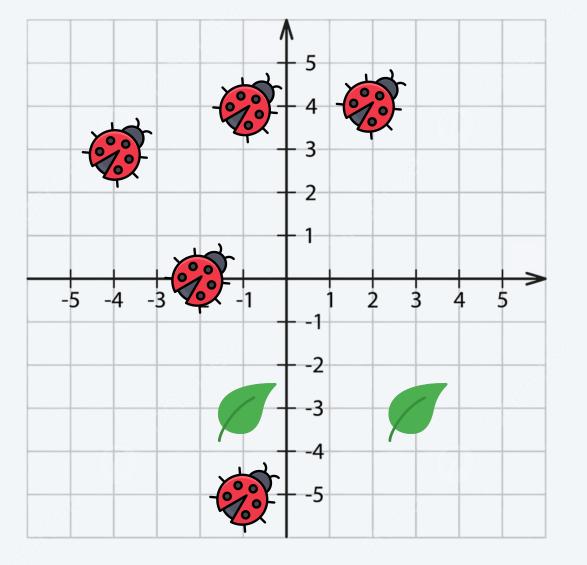
learning binary classifier algorithm

Steps.

3. **Evaluation:** Compute the performance metric with the test labels and the classifier predictions.



4. Deployment: If we are satisfied with our error rate, we can use our classifier on unknown points.



number of errors error rate = $\frac{1}{\text{total number of predictions}}$

error: test output != prediction

Machine Learning: quiz 2

We have a binary classifier that always predicts the most frequent label in the training data. What is the error rate of this classifier on the given test data?

- **A.** 30%
- **B.** 40%
- **C.** 60%
- D. I don't know

training da

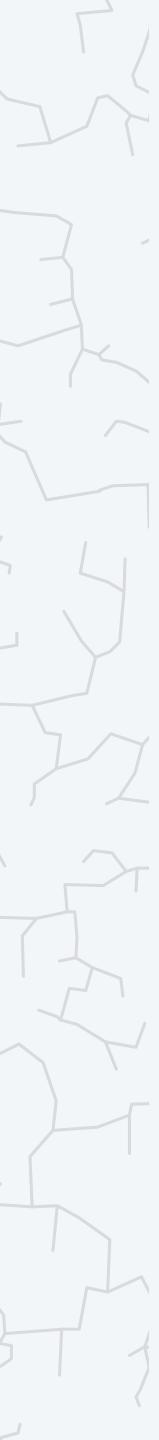
input binar

ata	test data		
ary label	input	binary label	
cat		cat	
cat		cat	
dog		cat	
dog		dog	
dog		dog	

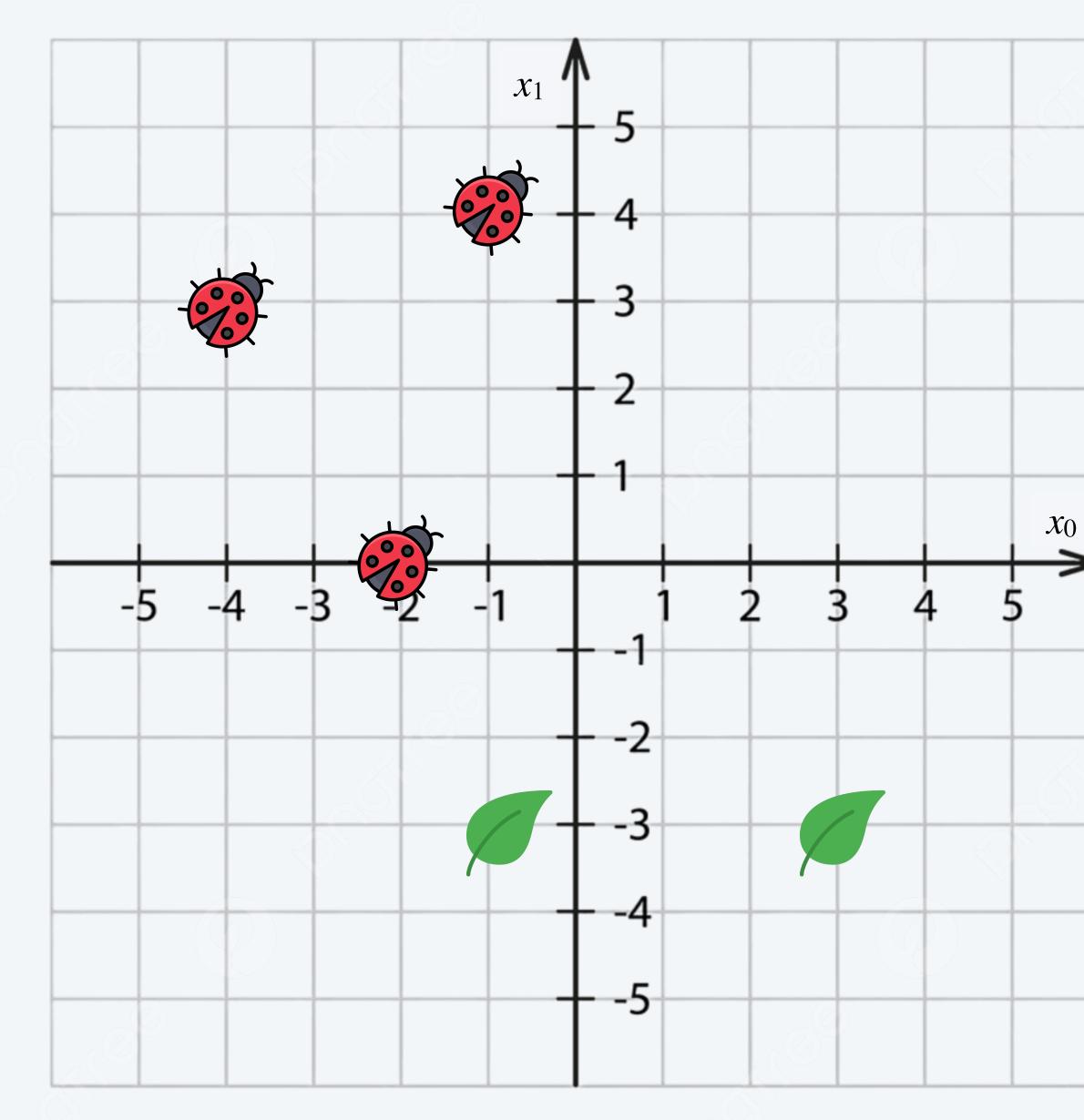
MACHINE LEARNING

pastel drawing of a student at Princeton, DALL · E 2

- what is machine learning?
- binary classifier
- the perceptron algorithm
- multi-class classifier



A simple binary classification problem



We want to know whether we have a ladybug or a leaf based on our position in the cartesian plane.

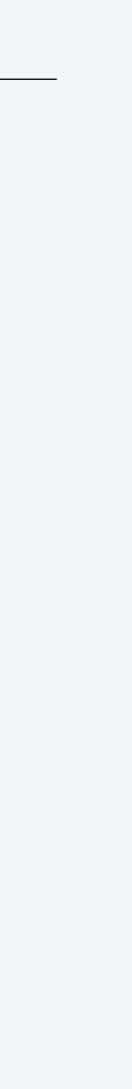
training data

<i>x</i> ₀	x_1	binary label
-2	0	+1
-1	-3	-1
-1	4	+1

test data

x ₀	x_1	binary label
-4	3	+1
3	-3	-1

we will use +1 for the ladybugs and -1 for the leaves



The perceptron is a learning algorithm that goes back to 1958.

It returns a vector of weights w which we use to make predictions. To make a prediction, we take a weighted sum *S* of the features. Then, we predict +1 if S > 0 and -1 otherwise.

training data (inputs)

<i>x</i> ₀	x_1
-2	0
-1	-3
-1	4

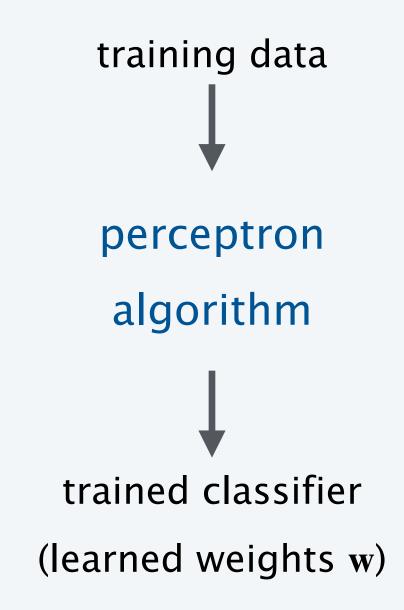
$$\mathbf{w} = (w_0, w_1)$$

$$S = w_0 \cdot x_0 + w_1 \cdot x_1$$

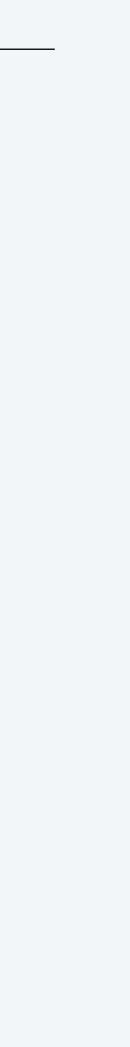
Suppose w = (10, 20)

$$S = 10 \cdot (-2) + 20 \cdot 0 =$$

Thus we predict -1, which corresponds to a



= -20



Training data points will arrive sequentially. We first make a prediction, and then use the label to update our weights.

Steps.

1. At time step t = 1, all weights in w_t start at 0.

 W_t

t

1

(0, 0)

Training data points will arrive sequentially. We first make a prediction, and then use the label to update our weights.

Steps.

1. At time step t = 1, all weights in w_t start at 0.

2. For input x of a new data point, we predict +1 iff S

weighted sum of features

Wt	x	binary Iabel	weighted sum (<i>S</i>)	prediction
(0, 0)	(-2, 0)	+1	0	-1

5 > 0.	training data		
	x_0	x_1	binary label
	-2	0	+1

Training data points will arrive sequentially. We first make a prediction, and then use the label to update our weights.

Steps.

- 1. At time step t = 1, all weights in w_t start at 0.
- 2. For input x of a new data point, we predict +1 iff S
- 3. We update the weights using the following rules:
 - A. If the prediction is correct, the weights don't cha
 - B. If we made a mistake on a positive point, update

C. If we made a mistake on a negative point, updat

Wt	x	binary Iabel	weighted sum (<i>S</i>)	prediction	<i>Wt</i> +1	
(0, 0)	(-2, 0)	+1	0	-1	(-2, 0)	
		↑				
S > 0.		ade an inc n on a pos	correct sitive point			

w_{t+1} = w_t + x
te w_{t+1} = w_t + x
te w_{t+1} = w_t - x
$$w_{t+1} = (0, 0) + (-2, 0) = (-2, 0)$$

Training data points will arrive sequentially. We first make a prediction, and then use the label to update our weights.

Steps. 1. At time step t = 1, all weights in w_t start at 0. 2

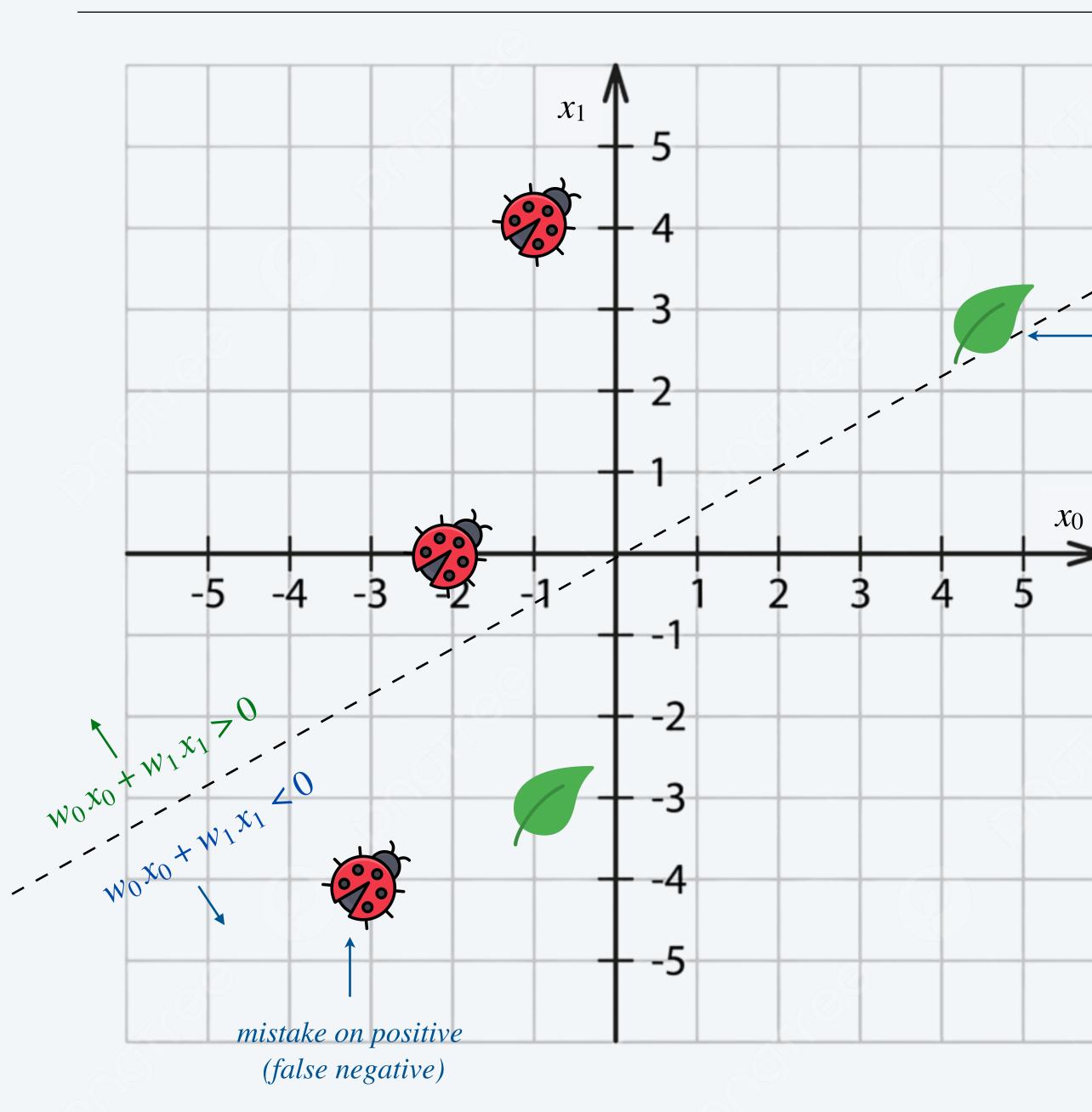
2. For input x of a new data point, we predict +1 iff S

- 3. We update the weights using the following rules:
 - A. If the prediction is correct, the weights don't cha
 - B. If we made a mistake on a positive point, update

C. If we made a mistake on a negative point, updat

Wt	x	binary Iabel	weighted sum (<i>S</i>)	prediction	<i>Wt</i> +1
(0, 0)	(-2,0)	+1	0	-1	(-2,0)
(-2,0)	(-1, -3)	-1	2	+1	(-1,3)
S > 0.					
		S = (= 2		$(-1) - 0 \cdot ($	(-3)
nange.		_		(1	2)
te $\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{x}$		•	(-2, 0) (-1, 3)	- (-1,	- 3)
$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{x}_t$	X		(_, _)		

Geometric intuition

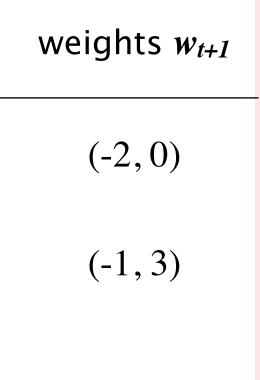


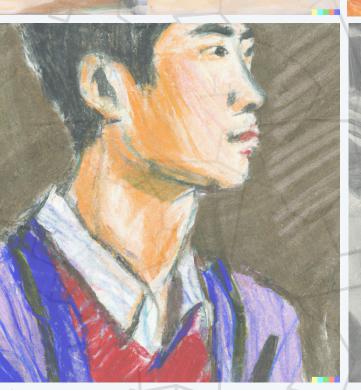
mistake on negative (false positive)

What are the weights w after training the perceptron algorithm on the following inputs?

- **A.** (-2, 7)
- **B.** (-1, 3)
- **C.** (0, -1)
- **D.** (-13, 39)

t	weights <i>w</i> t	input <i>x</i>	binary Iabel	weighted sum (<i>S</i>)	prediction
1	(0, 0)	(-2,0)	+1	0	-1
2	(-2,0)	(-1, -3)	-1	2	+1
3	(-1, 3)	(-1, 4)	+1		



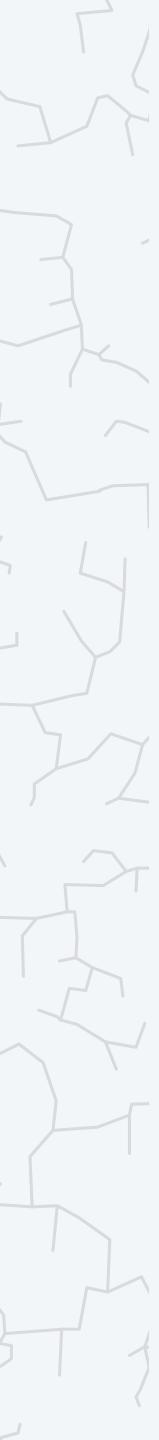


INTRODUCTION TO MACHINE LEARNING

binary classifier

pastel drawing of a student at Princeton, DALL · E 2

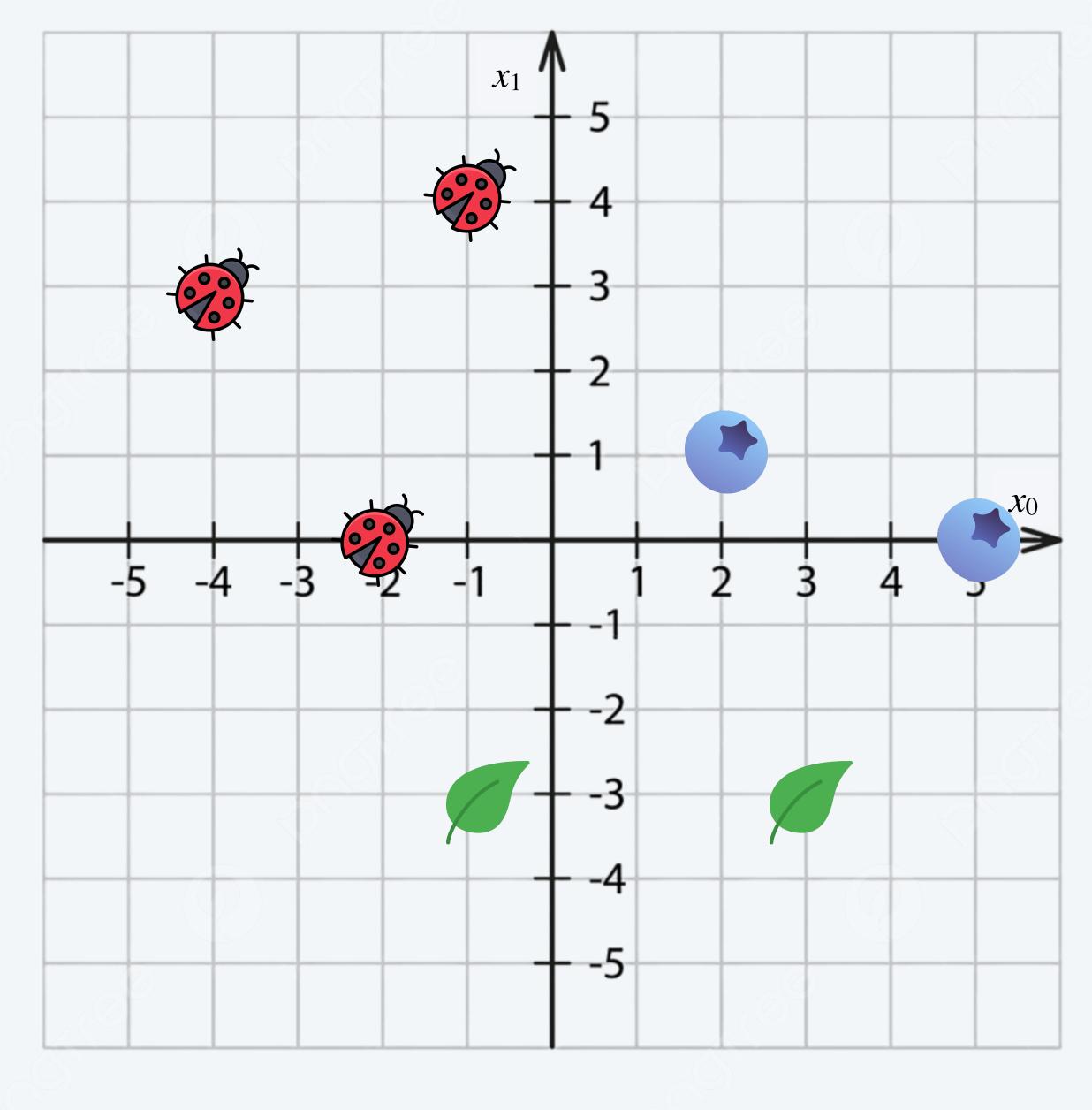
- what is machine learning?
- the perceptron algorithm
- multi-class classifier



A multi-class classifier separates elements in a data set into one of multiple groups (more than two).



A simple multi-class classification problem



We want to know whether we have a ladybug, a leaf or a blueberry based on our position in the cartesian plane.

training data

x	x_1	class label
-2	0	
-1	-3	
-1	4	
5	0	

test data

x ₀	x_1	class label
-4	3	
3	-3	
2	1	

We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

What we will use

- Training data with class labels.
- Test data with class labels.
- The perceptron algorithm.

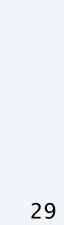
training data

x	x_1	class label
-2	0	
-1	-3	
-1	4	
5	0	

test data

<i>x</i> ₀	x_1	class lab
-4	3	
3	-3	
2	1	

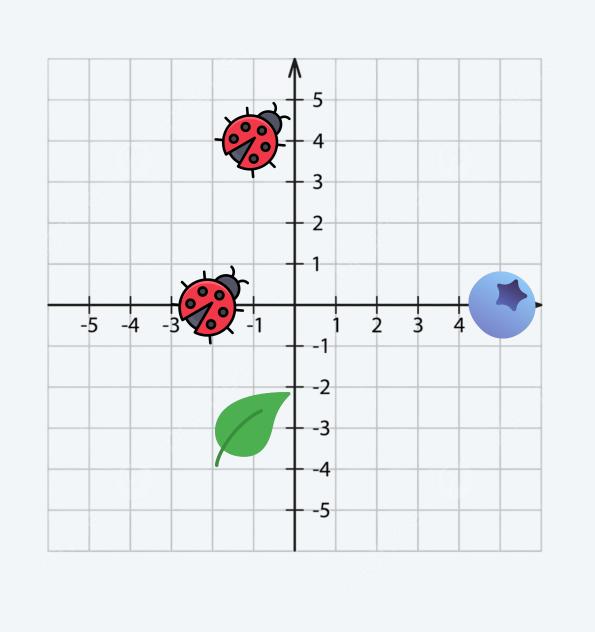
training data
perceptron
algorithm
trained classifier
(learned weights w)

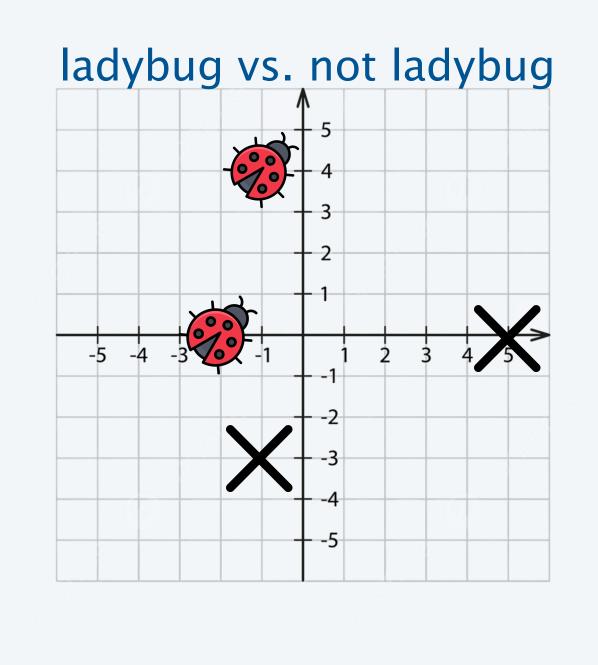


We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

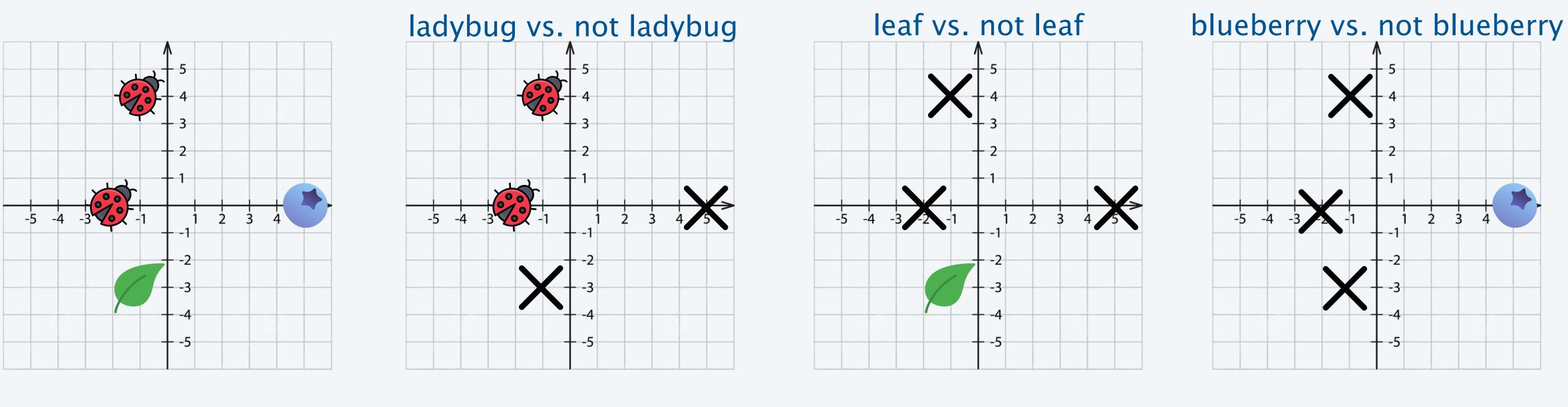
Steps

and all other data points.





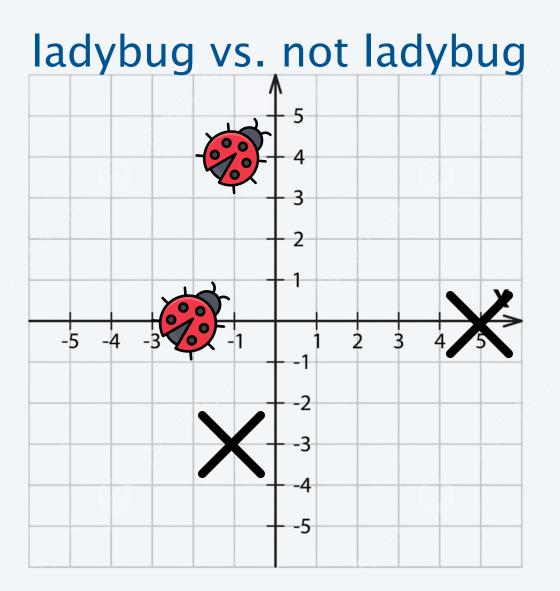
1. For each unique class label, construct a binary subproblem to recognize between data points of that class



We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

Steps

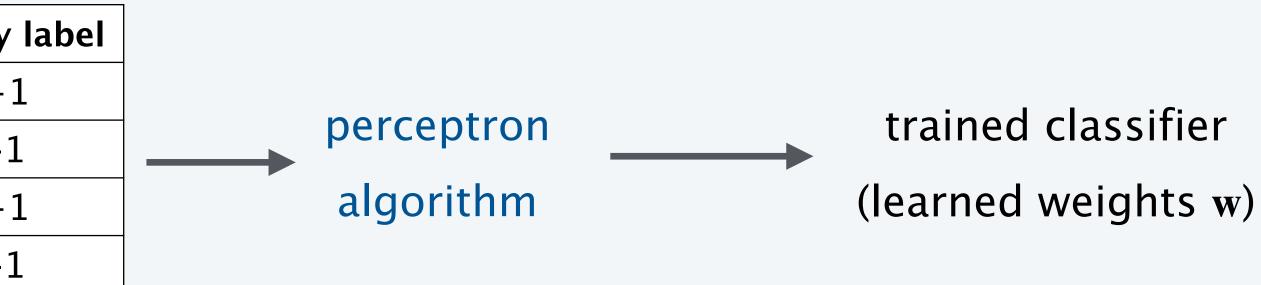
- and all other data points.
- 2. Train a perceptron for each binary subproblem.
 - A. Assign a positive binary label to members of the corresponding class.
 - B. Assign a negative binary label otherwise.



training data

x	x_1	class label	binary
-2	0	-000-	+
-1	-3		
-1	4	-000-	+
5	0		

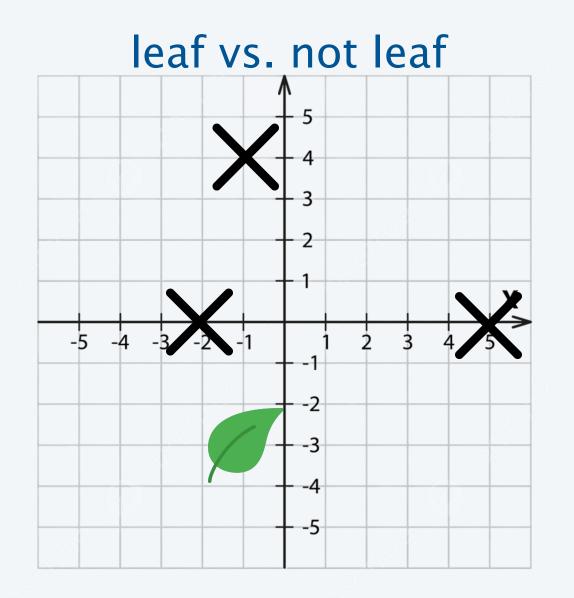
1. For each unique class label, construct a binary subproblem to recognize between data points of that class



We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

Steps

- and all other data points.
- 2. Train a perceptron for each binary subproblem.
 - A. Assign a positive binary label to members of the corresponding class.
 - B. Assign a negative binary label otherwise.



training data

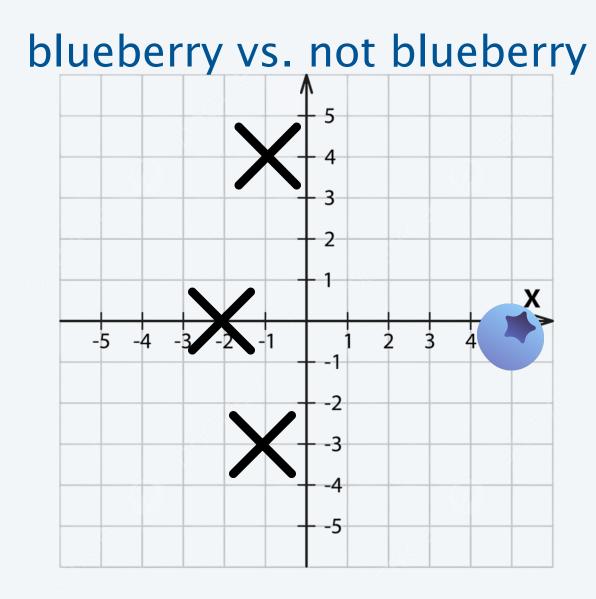
x	x_1	class label	binary
-2	0	-	_
-1	-3		+
-1	4	-000	—
5	0		_

1. For each unique class label, construct a binary subproblem to recognize between data points of that class

We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

Steps

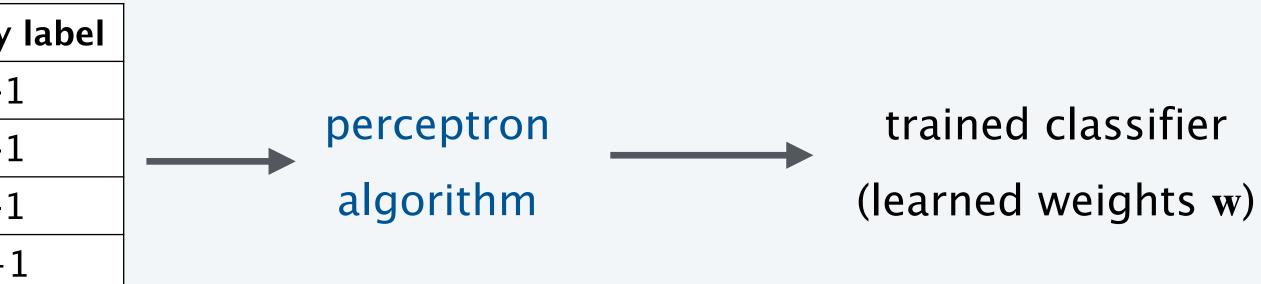
- and all other data points.
- 2. Train a perceptron for each binary subproblem.
 - A. Assign a positive binary label to members of the corresponding class.
 - B. Assign a negative binary label otherwise.



training data

<i>x</i> ₀	x_1	class label	binary
-2	0	-	-
-1	-3		
-1	4	-000-	
5	0		+

1. For each unique class label, construct a binary subproblem to recognize between data points of that class



We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

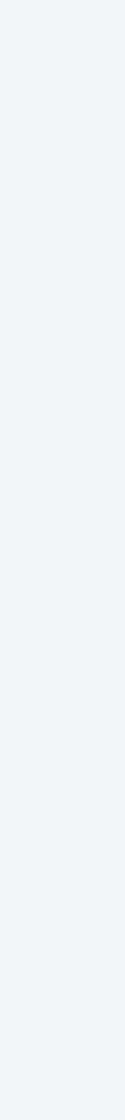
Steps

- and all other data points.
- 2. Train a perceptron for each binary subproblem.
 - A. Assign a positive binary label to members of the corresponding class.
 - B. Assign a negative binary label otherwise.

In the end we will have one vector of weights per binary subproblem.

Subproblem	learned weights w
ladybug vs. not ladybug	(-1, 3)
leaf vs. not leaf	(-1, -3)
blueberry vs. not blueberry	(5, 0)

1. For each unique class label, construct a binary subproblem to recognize between data points of that class

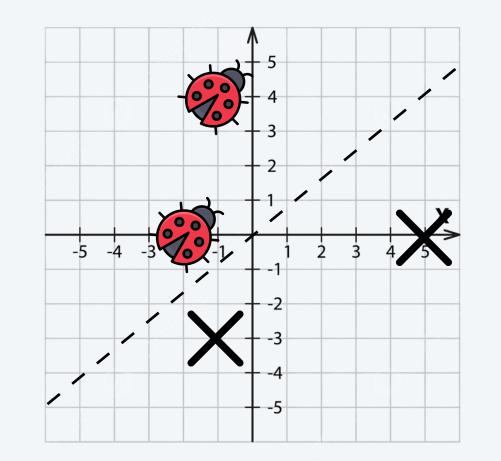


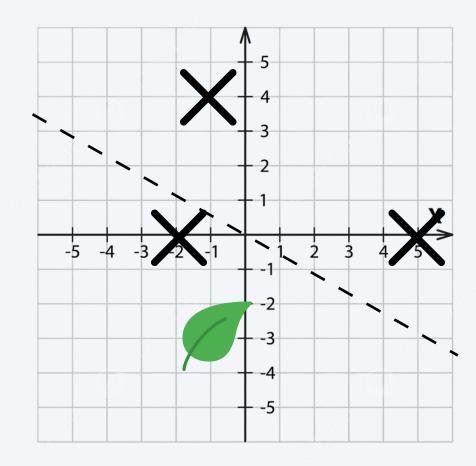
We can use most of the same machinery we used with a binary classifier. However, we will use a multi-perceptron.

Steps

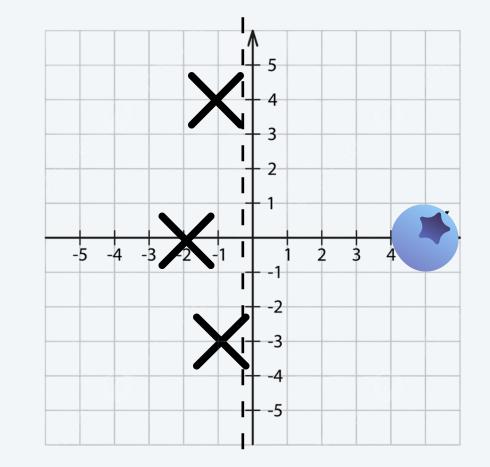
- and all other data points.
- 2. Train a perceptron for each binary subproblem.
 - A. Assign a positive binary label to members of the corresponding class.
 - B. Assign a negative binary label otherwise.

In the end we will have one vector of weights per binary subproblem.





1. For each unique class label, construct a binary subproblem to recognize between data points of that class



Predicting with a multi-perceptron

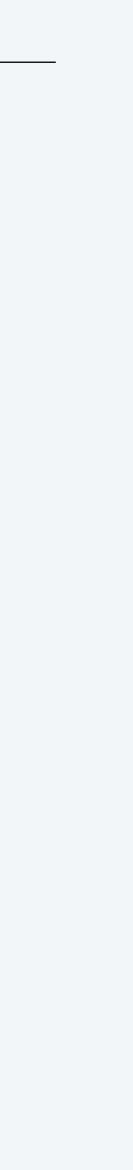
We have one vector of weights per binary subproblem. For input \mathbf{x} of a new data point, we compute the weighted sum S with each of the weight vectors. Finally, we predict the class with the largest weighted sum.

test data

x	x_1	class label	prediction
3	-3		

Subproblem	learned weights w	Weighted Su
ladybug vs. not ladybug	(-1, 3)	-12
leaf vs. not leaf	(-1, -3)	6
blueberry vs. not blueberry	(5, 0)	15

 $-12 = -1 \cdot (3) + 3 \cdot (-3)$ $6 = -1 \cdot 3 + (-3) \cdot (-3)$ $-20 = 5 \cdot 3 + 0 \cdot (-3)$



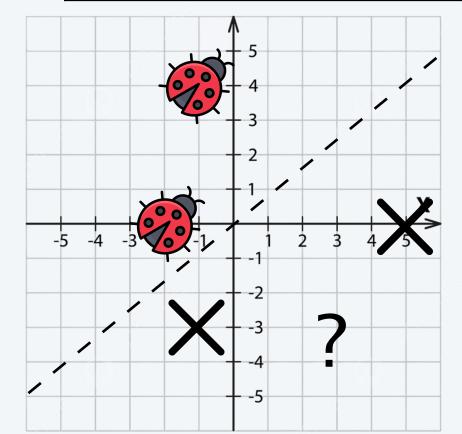
Predicting with a multi-perceptron

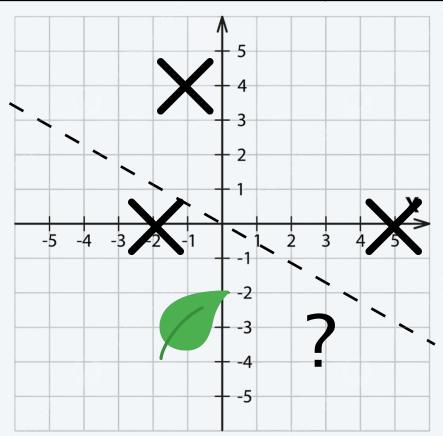
We have one vector of weights per binary subproblem. For input \mathbf{x} of a new data point, we compute the weighted sum S with each of the weight vectors. Finally, we predict the class with the largest weighted sum.

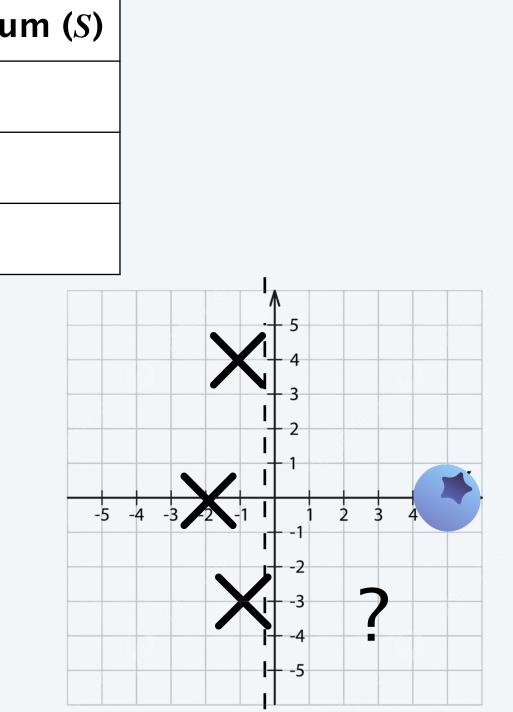
test data

x ₀	x_1	class label	prediction
3	-3		

Subproblem	learned weights w	Weighted Su
ladybug vs. not ladybug	(-1, 3)	-12
leaf vs. not leaf	(-1, -3)	6
blueberry vs. not blueberry	(5, 0)	15







Predicting with a multi-perceptron

We have one vector of weights per binary subproblem. For input \mathbf{x} of a new data point, we compute the weighted sum S with each of the weight vectors. Finally, we predict the class with the largest weighted sum.

test data

x ₀	<i>x</i> ₁	class label	prediction
-4	3		

Subproblem	learned weights w	Weighted Su
ladybug vs. not ladybug	(-1, 3)	13
leaf vs. not leaf	(-1, -3)	-5
blueberry vs. not blueberry	(5, 0)	-20

$$13 = -1 \cdot (-4) + 3 \cdot 3$$

$$-5 = -1 \cdot (-4) + (-3) \cdot 3$$

$$-20 = 5 \cdot (-4) + 0 \cdot 3$$

Machine Learning: quiz 4

What is the prediction of our multi-perceptron on the given test point?

Su

ladybug

leaf

blueberry

test data

X0	x_1	
2	1	

ubproblem	learned weights w
vs. not ladybug	(-1, 3)
vs. not leaf	(-1, -3)
vs. not blueberry	(5, 0)

We can write programs that improve with experience

- Machine learning uses old data as experience.
- We want to improve on new data.
- This is challenging and requires care.

Machine learning is inter-disciplinary.

- Intersection of computer science and statistics.
- The utility of our models is a domain specific matter.

Model utility goes beyond a performance metric.

- We want machine learning models to satisfy other criteria beyond good performance.
- For example, we want our models to be fair, interpretable, etc.

Please complete the mid-semester feedback survey (details on Ed)

More questions

attend office hours

ask on Ed