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7.  DIGITAL CIRCUITS

‣ boolean algebra 

‣ logic gates 

‣ adder circuit
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Context

Q.  How are computers built? 
A.  Not nearly as complicated as you might think. 
 
This lecture.  Introduction to digital circuits. 

・Digital = all signals are either 0 or 1. 

・Analog = signals vary continuously. 

・Advantages of digital:  accurate, reliable, fast, cheap, scalable, … 
 
 
 
Applications.  Laptop, smartphone, gaming console, pacemaker, microprocessor, …
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Boolean algebra

Boolean algebra.  Developed by George Boole in 1840s to study logic problems. 

・Values of variables are true (1) or false (0). 

・Primitive operations are NOT, AND, and OR. 

・Widely used in mathematics, logic, computer science, … 
 
 
 
 
 
 
 
 
 
 
 
Relevance to circuits.  Provides the mathematical foundation.

4

George Boole is Coole

this lecture

operation
logic

notation
Java

notation
circuit

notation precedence

NOT ¬ x !x x ʹ highest

AND x ⋀ y x && y x ⋅ y middle

OR x ⋁ y x || y x  + y lowest

Copyright 2004, Sidney Harris

http://www.sciencecartoonsplus.com/contact.htm


Truth tables

Boolean function.  A function whose arguments and result assume the values 0 and 1. 
 
Truth table.  A systematic way to define a boolean function. 

・One row for each possible assignment of arguments. 

・Each row gives the function value for the specified arguments. 

・The truth table of a boolean function of n  variables has 2n rows.

5

AND

x y x ⋅ y

0 0 0

0 1 0

1 0 0

1 1 1

OR

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

x x ʹ

0 1

1 0

x y z f (x, y, z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

count in binary from 0 to 2n − 1



Boolean algebra properties

Boolean algebra shares many properties with elementary algebra.

6

property AND OR

commutative x ⋅ y  =  y ⋅ x x + y  =  y + x

associative x ⋅ (y ⋅ z)  =  (x ⋅ y) ⋅ z x + (y + z)  =  (x + y) + z

identity x ⋅ 1  =  x x + 0  =  x

distributive x ⋅ (y + z)  =  (x ⋅ y) + (x ⋅ z) x + (y ⋅ z)  =  (x + y) ⋅ (x + z)

complementary x ⋅ xʹ  =  0 x + xʹ  =  1

idempotent x ⋅ x  =  x x + x  =  x

De Morgan (x  ⋅ y ) ʹ  =  x ʹ +  y ʹ (x + y) ʹ  =  x ʹ  ⋅  y ʹ

duality in any law, can interchange + and・,  along with  0 and 1 

⋮ ⋮

same as
elementary algebra

different from
elementary algebra

ax
io

m
s

th
eo

re
m

s

justifies use of ・ and + 
for AND and OR



Proving a theorem in Boolean algebra

Q.  How to prove a theorem, such as De Morgan’s law? 
 
A1.  Apply sequence of axioms or known theorems. 
 
A2.  For each possible assignment of truth values to variables,  
       evaluate the purported theorem; confirm that it is true.  

Ex.  De Morgan’s law:  (x ⋅ y) ʹ  =  (x ʹ + y ʹ).
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x y x  ⋅ y (x ⋅ y) ʹ

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

x y xʹ yʹ x ʹ + y ʹ

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

truth table for LHS truth table for RHS

“method of perfect induction”



Boolean functions of two variables

Boolean function.  A function whose arguments and result assume the values 0 and 1. 
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x y AND OR NAND NOR XOR

0 0 0 0 1 1 0

0 1 0 1 1 0 1

1 0 0 1 1 0 1

1 1 1 1 0 0 0

commonly used boolean functions of 2 variables

Copyright 2010, Toothpaste for Dinner

https://www.toothpastefordinner.com/index.php?date=071310
https://www.toothpastefordinner.com/index.php?date=071310


Boolean functions of three (and more) variables

Boolean function.  A function whose arguments and result assume the values 0 and 1. 

9

x y z AND OR MAJ ODD

0 0 0 0 0 0 0

0 0 1 0 1 0 1

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 0 1

1 0 1 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 1 1

function shorthand description

logical AND AND all inputs are 1

logical OR OR any input is 1

majority MAJ more inputs are 1 than 0

odd parity ODD odd number of inputs are 1

these functions all
extends to n variables

some boolean functions of 3 variables



Sum-of-products

Sum-of-products.  Every boolean function can be represented as a sum of products.

・Products:  form an AND term for each 1 in truth table. 

・Sum:  combine the terms with the OR function.

10

x y z MAJ xʹ ⋅ y ⋅ z x ⋅ yʹ ⋅ z x ⋅ y ⋅ zʹ x ⋅ y ⋅ z

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 1

1 1 0 1 0 0 1 0 1

1 1 1 1 0 0 0 1 1

Expressing MAJ(x, y, z) as a sum of products

(xʹ ⋅ y ⋅ z) + (x ⋅ yʹ ⋅ z) + (x ⋅ y ⋅ zʹ) + (x ⋅ y ⋅ z)  =  MAJ

also known as
“disjunctive normal form”



Digital circuits:  quiz 1

Which of the following does NOT represent majority function?

A.  (x ⋅ y) + (y ⋅ z) + (x ⋅ z) 

B.  z (x ʹy + xy ʹ)  + xy 

C.  (x ⋅ y) + (y ⋅ z) 

D.

11

public static boolean majority(boolean x, boolean y, boolean z) { 
   int count = 0; 
   if (x) count++; 
   if (y) count++; 
   if (z) count++; 
   return count >= 2; 
}

false negative when (x, y, z) = (1, 0, 1)



Universality

Def.  A set of operations is universal if every boolean function can be expressed  
using just those operations. 
 
Proposition.  { AND, OR, NOT } is a universal set of operations. 
Pf.  Sum-of-products construction on previous slide. 
 
Proposition.  { NAND } is a universal set of operations. 
Pf.  { AND, OR, NOT } can be constructed from NAND.

12

NAND

x y NAND

0 0 1

0 1 1

1 0 1

1 1 0
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A basis for digital devices

Claude Shannon.  Identified the deep connection between Boolean algebra and circuits. 

・Demonstrated how circuits could be analyzed using Boolean algebra. 

・Designed circuits to perform mathematical operations on binary numbers. 
 
 
 
 
 
 
 
 
 
 
 
Impact.  Every electronic device we use today is based upon Shannon’s foundational work.
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add, subtract, multiply, factor, …

SYMBOLIC ALYSIS 

OF 

LAY AND SVITCHING CI CUITS 

by 

Claude Elwood Shannon 

B.S., University of Michigan 

1936 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

from the 

Massachusetts Institute of Technology 

1940 

Signature of uthor Signature redacted 
Department of Electrical Engineering, August 10, 1937 

S~gnature of Professor Signature redacted in Charge of Research _ ---------------
Signa~ure of Cne.irman of Department Signature redacted 

Committee on Graduate Students 1 _ ---------------

Claude Shannon’s master’s thesis at MIT (1937)



The Bit Player

15

available on COS 126 Canvas
(movie features Dean Andrea Goldsmith)



Primitive logic gates:  AND, OR, and NOT

Logic gate.  Physical device that implement a boolean function with one output. 

gate truth table notation symbol

NOT
(inverter)

AND

OR

16

x NOT
0 1
1 0

x y AND
0 0 0
0 1 0
1 0 0
1 1 1

x  ⋅  y

x y OR
0 0 0
0 1 1
1 0 1
1 1 1

x  +  y

x ʹ x ʹx

x  ⋅  y
x
y

x + y
x
y



Digital circuits

Digital circuit.  A network of logic gates connected by wires. 

・Every wire is either on (1) or off (0). 

・Can connect output of one gate to input of another gate. 

・Any wire connected to a wire that is on is also on (and same for off).

17

x y

 f(x, y)

crossing
wires

connected
wires

output of AND gate
is input of OR gate

x y XOR
0 0 0
0 1 1
1 0 1
1 1 0

circuit inputs

circuit output



Digital circuits

Digital circuit.  A network of logic gates connected by wires. 

・Every wire is either on (1) or off (0). 

・Can connect output of one gate to input of another gate. 

・Any wire connected to a wire that is on is also on (and same for off).
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x y

x y XOR
0 0 0
0 1 1
1 0 1
1 1 0

0 1

0

1 0

0 1

1
1

0

1

 f(x, y)



Digital circuits:  quiz 2

For which values of x and y does the following circuit output 1 ?

A.  x = 0,  y = 0

B.  x = 0,  y = 1

C.  x = 1,  y = 0

D.  x = 1,  y = 1

E. None of the above.

19

x y

 f(x, y)



Multiway AND gates

Multiway AND gate. 

・1 if all inputs are 1. 

・0 if any input is 0.

20

x0
x1
x2
x3

AND
(4-way) x0 ⋅ x1 ⋅ x2 ⋅ x3

4-way AND gate symbol

x4

x5
AND

x6

x7
AND

AND

x0

x1
AND

x2

x3
AND

x0 ⋅ x1 ⋅ x2 ⋅ x3 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x7

8-way AND gate implementation
(tree of 2-way AND gates)



Multiway OR gates

Multiway OR gate. 

・1 if any input is 1. 

・0 if all inputs are 0.

21

x0
x1
x2
x3

AND
(4-way) x0  +  x1  +  x2  +  x3

4-way OR gate symbol

x4

x5
AND

x6

x7
AND

AND

x0

x1
AND

x2

x3
AND

AND

AND x0  +  x1  +  x2  +  x3  +  x4  +  x5  +  x6  +  x7

8-way OR gate implementation
(tree of 2-way OR gates)



Generalized AND gates

Generalized AND gate. 

・1 for exactly one set of input values. 

・0 for all other sets of input values.

22

w
x
y
z

G-AND
(4-way) w ʹ ⋅ x ⋅ y ʹ ⋅ z

each “inversion bubble”
denotes a NOT gate

4-way generalized
AND gate symbol

y
z

w
x

w ʹ ⋅ x ⋅ y ʹ ⋅ z

4-way generalized AND gate implementation
(tree of 2-way AND gates, plus NOT gates)



Majority function

Sum-of-products construction. 

・Identify rows of truth table where the function is 1. 

・Use a generalized AND gate for each term. 

・Combine the terms using an OR gate. 
 
Ex 1.  Majority function.

23

x y z MAJ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ(x, y, z)  =  x ʹyz + xy ʹz  + xyz ʹ  + xyz

x ʹyz

xy ʹz

xyz ʹ

xyz

MAJ

3-way
majority circuit

x y z

MAJ(x, y, z)

x ʹyz

xy ʹz

xyz ʹ

xyz



Odd-parity function

Sum-of-products construction. 

・Identify rows of truth table where the function is 1. 

・Use a generalized AND gate for each term. 

・Combine the terms using an OR gate. 
 
Ex 2.  Odd-parity function.

24

x y z ODD

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

ODD(x, y, z)  =  x ʹy ʹz  + x ʹyz ʹ  + xy ʹz ʹ  + xyz

x ʹy ʹz

x ʹyz ʹ

xy ʹz ʹ

xyz

ODD

3-way odd
parity circuit

x y z

ODD(x, y, z)

x ʹy ʹz

x ʹyz ʹ

xy ʹz ʹ

xyz



Sum-of-products construction (summary)

Goal.  Design a digital circuit that computes a given boolean function. 
 
Recipe. 

・Step 1:  Represent input and output with boolean variables. 

・Step 2:  Construct truth table to define the function. 

・Step 3:  Identify rows where the function is 1. 

・Step 4:  Use a generalized AND gate for each row, and OR the results. 
 
 
 
Profound consequence.  Can design a digital circuit for ANY boolean function.

25

sum-of-products construction



Optimized digital circuits

Caveat.  Sum-of-products construction is not optimal in terms of: 

・Space = number of gates. 

・Time = depth of circuit. 
 
Ex.  Majority function.

26

x y z

x y z

xy + yz + xz

3-way majority circuit (optimized)3-way majority circuit (sum-of-products)

this course:  we’ll ignore such low-level optimization



Digital circuits:  quiz 3

How many 3-way generalized AND gates are needed to build the sum-of-products circuit 
for the following truth table?

A.  1

B.  2

C.  3

D.  4

27

x y z

3-way equality circuit
(sum-of-products)

x y z EQ

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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Let's make an adder circuit!

Adder circuit.  Compute z = x + y for 4-bit binary integers. 
 
First step.  Represent inputs and outputs in binary.

29

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

y0x0

z3 z2 z1 z0 4 output bits

8 input bits

ADDER

y1x1y2x2y3x3

ignore integer overflow



Let's make an adder circuit!

Adder circuit.  Compute z = x + y for 4-bit binary integers. 
 
First step.  Represent inputs and outputs in binary.

30

ADDER

1 0 1 1

01101100

0 1 0 1
+ 0 1 1 0
 1 0 1 1

ignore integer overflow



Digital circuits:  quiz 4

What is the binary sum 1011 + 0110?

A.  0001

B.  1001

C.  1101 

D.  1121 

E.  10001

31

1 1 1
1 0 1 1

+ 0 1 1 0
 0 0 0 1

ignore
overflow



Let's make an adder circuit!

Adder circuit.  Compute z = x + y for 4-bit binary integers. 
 
Straw-person solution.  Build a truth table for each output bit. 
Approach is not scalable!  Truth table for 128-bit adder would have 2256 rows.

32

truth table for 4-bit adder

x3 x2 x1 x0 y3 y2 y1 y0 z3 z2 z1 z0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 0

28 = 512 rows

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

exceeds number of
electrons in universe (!)



Let's make an adder circuit!

Adder circuit.  Compute z = x + y for 4-bit binary integers. 
 
 
 
 
 
 
 
Efficient solution.  Do one bit at a time. 

・Build truth table for each carry bit. 

・Build truth table for each sum bit.

33

xi yi ci ci+1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

truth table for carry bit

MAJ

0

0

0

1

0

1

1

1

majority function (!)

c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

c0  = 0

ci+1  =  MAJ(xi,  yi, ci)



Adder circuit.  Compute z = x + y for 4-bit binary integers. 
 
 
 
 
 
 
 
Efficient solution.  Do one bit at a time. 

・Build truth table for each carry bit 

・Build truth table for each sum bit.
majority function (!)

Let's make an adder circuit!

34

odd-parity function (!)

c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

c0  = 0

xi yi ci zi

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

truth table for sum bit

ODD

0

1

1

0

1

0

0

1

zi  =  ODD(xi,  yi, ci)



Let's make an adder circuit!

Adder circuit.  Compute z = x + y for 4-bit binary integers. 
 
 
 
 
 
 
 
Efficient solution.  Do one bit at a time. 

・Carry bit is MAJ. 

・Sum bit is ODD. 

・Chain 1-bit adders to “ripple” carries. 
 
Size of circuit.  Θ(n) gates for n-bit adder.

35

c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

c0  = 0

MAJ

ODD

0

x0

z0

y0

MAJ MAJ

ODD ODD

0

x1 y1 x0

z1 z0

y0

MAJ MAJ MAJ

ODD ODD ODD

0

x2 y2 x1 y1 x0

z2 z1 z0

y0

MAJ MAJ MAJ MAJ

ODD ODD ODD ODD

0

x3 y3 x2 y2 x1 y1 x0

z3 z2 z1 z0

y0



Adder circuit trace

Circuit trace.  Trace the execution of the adder circuit on a given input.
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MAJ MAJ MAJ MAJ

ODD ODD ODD ODD

0

x3 y3 x2 y2 x1 y1 x0

z3 z2 z1 z0

y0

1 1 1
1 0 1 1

+ 0 1 1 0
 0 0 0 1

1 0 0 1 1 1 1 0

1

0

0

1

0

1

0

1



Encapsulation

Encapsulation in circuit design mirrors familiar software design principle. 

・API describes behavior (input and outputs) of circuit. 

・Implementation gives details of how to build it from wires and gates. 

・Client uses circuit as a black box. 
 
 
 
 
 
 
 
 
 
 
 
Bottom line.  We manage complexity by encapsulating circuits.

37

MAJ ODD ADDER



Layers of abstraction

Layers of abstraction apply with a vengeance. 

・On/off. 

・Switch. 

・Primitive gates (AND, OR, NOT). 

・Composite gates (multiway AND/OR, MAJ, ODD). 

・Adder circuit. 

・Memory. 

・Arithmetic logic unit (ALU). 

・Central processing unit (CPU). 

・Input and output. 

・Your computer. 
 
Want to learn more?  See ECE 206 and ECE 365.

38

switch (transistor)

AND OR NOT

MAJ

decoder flip–flop

memory ALU control

clock

central processing unit (CPU)

electrons silicon

ODDNAND …

…adder

register

input output



Credits

Co-instructors 
 
 
 
 
 
 
Undergrad graders and lab TAs.  Apply to be one next semester!

39

Alan Kaplan Kobi KaplanSebastian Caldas

                       , course admin, and graduate student preceptors.                       , course admin,



ChatGPT:> please compose a COS 126 poem

40

In Princeton’s halls, where minds align, 

COS 126 and Java intertwine. 

Computability’s essence, programming’s sphere, 

In this synthesis, brilliance appears.

In the realm of TOY’s simplified grace, 

Circuits hum with intricate embrace. 

Machine learning’s promise, a horizon to chase, 

In this trio’s dance, innovation finds its place.

A final thought
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