Computer Science

7. Digital Circuits

- boolean algebra
- logic gates
- adder circuit

Context

Q. How are computers built?
A. Not nearly as complicated as you might think.

This lecture. Introduction to digital circuits.

- Digital = all signals are either 0 or 1 .
- Analog = signals vary continuously.
- Advantages of digital: accurate, reliable, fast, cheap, scalable, ...

Applications. Laptop, smartphone, gaming console, pacemaker, microprocessor, ...

7. Digital Circuits

- boolean algebra
- <ogic ǵates
- adder circuit

Boolean algebra

Boolean algebra. Developed by George Boole in 1840s to study logic problems.

- Values of variables are true (1) or false (0).
- Primitive operations are NOT, AND, and OR.
- Widely used in mathematics, logic, computer science, ...

operation	logic notation	Java notation	circuit notation	precedence	
NOT	$\neg \mathrm{x}$	$!\mathrm{x}$	x^{\prime}	highest	
OR	$\mathrm{x} \wedge \mathrm{y}$	$\mathrm{x} \& \& \mathrm{y}$	$x \cdot y$	middle	
$\mathrm{x} \vee \mathrm{y}$	$\mathrm{x} \\| \mathrm{y}$	$x+y$	lowest		

Relevance to circuits. Provides the mathematical foundation.

George Boole is Coole

Copyright 2004, Sidney Harris

Truth tables

Boolean function. A function whose arguments and result assume the values 0 and 1 .

Truth table. A systematic way to define a boolean function.

- One row for each possible assignment of arguments.
- Each row gives the function value for the specified arguments.
- The truth table of a boolean function of n variables has 2^{n} rows.

Boolean algebra properties

Boolean algebra shares many properties with elementary algebra. \qquad justifies use of • and + for AND and OR

Proving a theorem in Boolean algebra

Q. How to prove a theorem, such as De Morgan's law?

A1. Apply sequence of axioms or known theorems.

A2. For each possible assignment of truth values to variables, evaluate the purported theorem; confirm that it is true.

Ex. De Morgan's law: $(x \cdot y)^{\prime}=\left(x^{\prime}+y^{\prime}\right)$.

x	y	$x \cdot y$	$(x \cdot y)^{\prime}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

truth table for LHS

x	y	x^{\prime}	y^{\prime}	$x^{\prime}+y^{\prime}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Boolean functions of two variables

Boolean function. A function whose arguments and result assume the values 0 and 1 .

x	y	$A N D$	$O R$	NAND	NOR	XOR
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

commonly used boolean functions of 2 variables

Copyright 2010, Toothpaste for Dinner

Boolean functions of three (and more) variables

Boolean function. A function whose arguments and result assume the values 0 and 1 .

x	y	z	AND	OR	MAJ	$O D D$			
0	0	0	0	0	0	0	function	shorthand	description
0	0	1	0	1	0	1			
0	1	0	0	1	0	1	logical AND	AND	all inputs are 1
0	1	1	0	1	1	0	logical OR	OR	any input is 1
1	0	0	0	1	0	1	majority	MAJ	more inputs are 1 than 0
1	0	1	0	1	1	0	odd parity	$O D D$	odd number of inputs are 1
1	1	0	0	1	1	0			
1	1	1	1	1	1	1	these functions all extends to n variab		

Sum-of-products

Sum-of-products. Every boolean function can be represented as a sum of products.

- Products: form an AND term for each 1 in truth table.
- Sum: combine the terms with the $O R$ function.
also known as
"disjunctive normal form"

| x | y | z | $M A J$ | $x^{\prime} \cdot y \cdot z$ | $x \cdot y^{\prime} \cdot z$ | $x \cdot y \cdot z^{\prime}$ | $x \cdot y \cdot z$ | \quad |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

Digital circuits: quiz 1

Which of the following does NOT represent majority function?

A. $(x \cdot y)+(y \cdot z)+(x \cdot z)$
B. $z\left(x^{\prime} y+x y^{\prime}\right)+x y$
C. $(x \cdot y)+(y \cdot z)$
D.

```
public static boolean majority(boolean x, boolean y, boolean z) {
    int count = 0;
    if (x) count++;
    if (y) count++;
    if (z) count++;
    return count >= 2;
}
```


Universality

Def. A set of operations is universal if every boolean function can be expressed using just those operations.

Proposition. $\{A N D, O R, N O T\}$ is a universal set of operations.
Pf. Sum-of-products construction on previous slide.

Proposition. $\{N A N D$ \} is a universal set of operations.
Pf. $\{A N D, O R, N O T\}$ can be constructed from NAND.

x	y	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NAND

7. Digital Circuits

- boolean a algèbra
- logic gates
- adder circuit

A basis for digital devices

Claude Shannon. Identified the deep connection between Boolean algebra and circuits.

- Demonstrated how circuits could be analyzed using Boolean algebra.
- Designed circuits to perform mathematical operations on binary numbers. \qquad add, subtract, multiply, factor, ...

Claude Shannon's master's thesis at MIT (1937)

Impact. Every electronic device we use today is based upon Shannon's foundational work.

Primitive logic gates: AND, OR, and NOT

Logic gate. Physical device that implement a boolean function with one output.

Digital circuits

Digital circuit. A network of logic gates connected by wires.

- Every wire is either on (1) or off (0).
- Can connect output of one gate to input of another gate.
- Any wire connected to a wire that is on is also on (and same for off).

Digital circuits

Digital circuit. A network of logic gates connected by wires.

- Every wire is either on (1) or off (0).
- Can connect output of one gate to input of another gate.
- Any wire connected to a wire that is on is also on (and same for off).

x	y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Digital circuits: quiz 2

For which values of x and y does the following circuit output 1 ?
A. $x=0, y=0$
B. $x=0, y=1$
C. $x=1, y=0$
D. $x=1, y=1$
E. None of the above.

Multiway AND gates

Multiway AND gate.

- 1 if all inputs are 1 .
- 0 if any input is 0 .

Multiway $O R$ gates

Multiway $O R$ gate.

- 1 if any input is 1 .
- 0 if all inputs are 0 .

8-way OR gate implementation (tree of 2-way OR gates)

Generalized AND gates

Generalized AND gate.

- 1 for exactly one set of input values.
- 0 for all other sets of input values.

4-way generalized AND gate implementation (tree of 2-way AND gates, plus NOT gates)

Majority function

Sum-of-products construction.

- Identify rows of truth table where the function is 1 .
- Use a generalized $A N D$ gate for each term.
- Combine the terms using an $O R$ gate.

Ex 1. Majority function.

x	y	z	$M A J$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	$1 \longleftarrow x^{\prime} y z$
1	0	0	0
1	0	1	$1 \longleftarrow x y^{\prime} z$
1	1	0	$1 \longleftarrow x y z^{\prime}$
1	1	1	$1 \longleftarrow x y z$

$\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$

Odd-parity function

Sum-of-products construction.

- Identify rows of truth table where the function is 1 .
- Use a generalized $A N D$ gate for each term.
- Combine the terms using an $O R$ gate.

3-way odd parity circuit

[^0]

Sum-of-products construction (summary)

Goal. Design a digital circuit that computes a given boolean function.

Recipe.

- Step 1: Represent input and output with boolean variables.
- Step 2: Construct truth table to define the function.
- Step 3: Identify rows where the function is 1 .
- Step 4: Use a generalized $A N D$ gate for each row, and $O R$ the results.

Profound consequence. Can design a digital circuit for ANY boolean function.

Optimized digital circuits

Caveat. Sum-of-products construction is not optimal in terms of:

- Space $=$ number of gates.
- Time = depth of circuit.

Ex. Majority function.

Digital circuits: quiz 3

How many 3-way generalized AND gates are needed to build the sum-of-products circuit for the following truth table?
A. 1
B. 2
C. 3
D. 4

x	y	z	$E Q$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

7. Digital Circuits

- boolean algèbra
- logic gáatés
- adder circuit

Let's make an adder circuit!

Adder circuit. Compute $z=x+y$ for 4-bit binary integers. ignore integer overflow

First step. Represent inputs and outputs in binary.

Let's make an adder circuit!

Adder circuit. Compute $z=x+y$ for 4-bit binary integers. ignore integer overflow

First step. Represent inputs and outputs in binary.

$+$| 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 |

Digital circuits: quiz 4

What is the binary sum $1011+0110 ?$
A. 0001
B. 1001
C. 1101

D. 1121
E. 10001

Let's make an adder circuit!

Adder circuit. Compute $z=x+y$ for 4-bit binary integers.
exceeds number of
electrons in universe (!)
Straw-person solution. Build a truth table for each output bit.
Approach is not scalable! Truth table for 128 -bit adder would have 2^{256} rows.

truth table for 4-bit adder

Let's make an adder circuit!

Adder circuit. Compute $z=x+y$ for 4-bit binary integers.

$$
+\begin{array}{llll}
& & & c_{3} \\
c_{2} & c_{1} & c_{0} \\
x_{3} & x_{2} & x_{1} & x_{0} \\
y_{3} & y_{2} & y_{1} & y_{0} \\
\hline z_{3} & z_{2} & z_{1} & z_{0}
\end{array}
$$

Efficient solution. Do one bit at a time.

- Build truth table for each carry bit. \qquad majority function (!)
- Build truth table for each sum bit.

x_{i}	y_{i}	c_{i}	c_{i+1}	$M A J$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
truth table for carry bit	$c_{i+1}=\operatorname{MAJ}\left(x_{i}, y_{i}, c_{i}\right)$			

Let's make an adder circuit!

Adder circuit. Compute $z=x+y$ for 4-bit binary integers.

$$
+\begin{array}{cccc}
c_{3} & c_{2} & c_{1} & c_{0} \\
x_{3} & x_{2} & x_{1} & x_{0} \\
y_{3} & y_{2} & y_{1} & y_{0} \\
\hline z_{3} & z_{2} & z_{1} & z_{0}
\end{array}
$$

Efficient solution. Do one bit at a time.

- Build truth table for each carry bit \qquad
- Build truth table for each sum bit. \longleftarrow odd-parity function (!)

x_{i}	y_{i}	c_{i}	z_{i}	$O D D$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Let's make an adder circuit!

Adder circuit. Compute $z=x+y$ for 4-bit binary integers.

Efficient solution. Do one bit at a time.

- Carry bit is MAJ.
- Sum bit is $O D D$.
- Chain 1-bit adders to "ripple" carries.

Size of circuit. $\Theta(n)$ gates for n-bit adder.

Adder circuit trace

Circuit trace. Trace the execution of the adder circuit on a given input.

Encapsulation

Encapsulation in circuit design mirrors familiar software design principle.

- API describes behavior (input and outputs) of circuit.
- Implementation gives details of how to build it from wires and gates.
- Client uses circuit as a black box.

Bottom line. We manage complexity by encapsulating circuits.

Layers of abstraction

Layers of abstraction apply with a vengeance.

- On/off.
- Switch.
- Primitive gates (AND, OR, NOT).
- Composite gates (multiway AND/OR, MAJ, ODD).
- Adder circuit.
- Memory.
- Arithmetic logic unit (ALU).
- Central processing unit (CPU).
- Input and output.
- Your computer.

Want to learn more? See ECE 206 and ECE 365.

Credits

Co-instructors, course admin, and graduate student preceptors.

Alan Kaplan

Sebastian Caldas

Kobi Kaplan

Undergrad graders and lab TAs. Apply to be one next semester!

A final thought

Credits

image	source	license
Retro Telephone and Smartphone	$\underline{\text { Adobe Stock }}$	$\underline{\text { education license }}$
Macbook Pro	$\underline{\text { Apple }}$	
Samsung Galaxy S23	$\underline{\text { Mamsung }}$	
Xbox One	$\underline{\text { Adobe Stock }}$	$\underline{\text { education license }}$
Cardiac Pacemaker	$\underline{\text { ClishPhilosophy BY-NC-SA 2.0 }}$	
Apple Al6 Bionic Chip	$\underline{\text { Sidney Harris }}$	
Boole Orders Lunch Coole	$\underline{\text { nand2tetris.org }}$	
From NAND to Tetris		
Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne		

Credits

image	source	license
Claude Shannon	$\underline{\text { Lucent Technologies }}$	
Bit Player Theatrical Poster	$\underline{\text { thebitplayer.com }}$	
John Hutton as Claude Shannon	$\underline{\text { thebitplayer.com }}$	education license
Logic Gate Symbols	$\underline{\text { Adobe Stock }}$	$\underline{\text { education license Stock }}$
Apple MacBook Pro		
Lecture Slides © Copyright 2024		
Robert Sedgewick and Kevin Wayne		

[^0]: $O D D(x, y, z)=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$

