

Theory of Computing

- introduction
- models of computation
- universality
- computability
- halting problem

Theory of Computing

- introduction
-models of computation
- universality
- computability
- halting prob́lem

Introduction to theory of computing

Fundamental questions.

- What is an algorithm?
- What is a general-purpose computer?
- What can a computer do?
- What can a computer do with limited resources?

History. Pioneering work at Princeton in the 1930s.

Kurt Gödel

Alonzo Church

Alan Turing

Introduction to theory of computing

Fundamental questions.

- What is an algorithm?
- What is a general-purpose computer?
- What can a computer do?
- What can a computer do with limited resources?

General approach. Consider minimal abstract machines.
Surprising outcome. Sweeping and relevant statements about all computers.

Why study theory of computing?

In theory...

- Deeper understanding of computation.
- Foundation of all modern computers.
- Philosophical implications.
- Pure science.

In practice...

- Pattern matching: theory of regular expressions.
- Sequential circuits: theory of finite-state automata.
- Compilers: theory of context-free grammars.

- Cryptography:
- Data compression: theory of computational complexity. theory of information.

Some computational problems

Function problem. Compute a mathematical function.
input can be numbers,
text, image, video, code,
(encoded in binary) ext, image, video, code,
(encoded in binary)

A warmup puzzle

Post's correspondence problem (PCP). Given n domino types, is there an arrangement of dominos with matching top and bottom strings?

- Each domino has a top string and bottom string.
- No limit on the number of dominos used of each type.

Input.

Solution. Yes.

Theory of computing: quiz 1

Is there an arrangement of dominos with matching top and bottom strings?
A. Yes.
B. No.

A warmup puzzle

Post's correspondence problem (PCP). Given n domino types, is there an arrangement of dominos with matching top and bottom strings?

- Each domino has a top string and bottom string.
- No limit on the number of dominos used of each type.

Input. [devised by Andrew Appel '81]
$\frac{S[}{\mathrm{S}[11111 \mathrm{X}][}$
0

1

2

3
4

5
6

7

8

10

$$
n=11
$$

Challenge [hard]. Find a solution that starts with letter S.

A warmup puzzle

Post's correspondence problem (PCP). Given n domino types, is there an arrangement of dominos with matching top and bottom strings?

- Each domino has a top string and bottom string.
- No limit on the number of dominos used of each type.

A reasonable idea. Write a Java program that takes n domino types as input and solves PCP. you don't know how many dominos you will need

Astonishing fact. It is provably impossible to write such a program!

Theory of Computing

- introduction
- models of computation
- universality
- computability
- halting problem

Deterministic finite-state automata demo

Goal. A simple model of computation.

Deterministic finite-state automata demo

Goal. A simple model of computation.

Deterministic finite-state automata

DFA. An abstract machine.

- Finite number of states.
- Begin in the start state; accept if end state is labeled Y.
- Repeat until the last input symbol has been consumed:
- read next input symbol
- move to the indicated state

Theory of computing: quiz 2

Describe the set of strings that the DFA matches.

A. All binary strings ending in aa.
B. All binary strings containing aa.
C. All binary strings containing at least two a's.
D. All binary strings containing an even number of a's.

Deterministic finite-state automata

Fact. DFAs can solve some important problems, but not others.
solvable with DFA not solvable with DFA

even number of a 's and b 's	equal number of a's and b's
legal Java variable name	legal Java program
web form validation	primality checking
PROSITE pattern in genomics	Watson-Crick palindrome
sequential circuit	Post's correspondence problem
regular expression	halting problem

Turning machines: intuition

Goal. A simple model of computation that encompasses all known computational processes. Approach. Characterize what a human "computer" can do with pencil, paper, and mechanical rules.

Ex. A familiar computational process.

		1	0	1	0			
			3	1	4	2		
			7	1	8	2		
		1	0	3	2	4		

Key characteristics. Discrete; read/write; conditionals and loops; no prior limit on time/space.

Turing machine demo: balanced parentheses

Turing machine. An abstract machine that embodies mechanical rules on previous slide.

Turing machines

Turing machine. An abstract machine that embodies mechanical rules on previous slide.

- Finite number of states and state transitions.
- Tape that stores symbols (for input, output, and intermediate results).
- can read and write to tape
- can move tape head left or right one cell
- no limit on length

Limitation. Each TM corresponds to one algorithm (or one program). Not programmable!

Universal Turing machine

Next goal. A "programmable" Turing machine.

Key insight. A TM can be represented as a string. \longleftarrow treat program as data

Universal TM. A single TM that can compute anything computable by any TM.

- Input: description of a TM and input for that TM.
- Output: the result of running that TM on that input.

Theorem. [Turing 1936] There exists a universal TM. Pf idea. Simulating a TM is a mechanical procedure.

Implications of universal Turing machine

TM. Formalizes the notion of an algorithm.
Universal TM. Formalizes the notion of a general-purpose computer. \qquad we are so used to having a UTM in our pocket (smartphone), that we take this for granted

Profound implications.
 for communication, photos, music, videos, games, calculators, word processing, ...

- Single, universal, device.
- Anyone can invent a new way to use a computer.
pong, email, spreadsheet, web, search engine, e-commerce, social media, cryptocurrency, self-driving car, ChatGPT, .
" The importance of the universal machine is clear. We do not need to have an infinity of different machines doing different jobs.... The engineering problem of producing various machines for various jobs is replaced by the office work of 'programming' the universal machine." - Alan Turing (1948)

Theory of Computing

- introduction
\rightarrow models of computation
- universality
- computability
- halting problem
https://introcs.cs.princeton.edu

Church-Turing thesis

Church-Turing thesis. Any computational problem that can be solved by a physical system
(in this universe) can be solved by a Turing machine.

Remark. It's a thesis (not a theorem) since it's a statement about physics.

- Subject to falsification.
- Not subject to mathematical proof.
this is what we mean by
Implications.
"general-purpose computer"
- "All" computational devices can solve exactly the same computational problems.
- Turing's definition of computation is (equivalent to) the right one.
- Enables rigorous study of computation (in this universe).

Analytical Engine

DNA

- A new law of physics. (!)

black hole

Evidence supporting the Church-Turing thesis: random-access machines

Fact. All of these random-access machines are provably equivalent to a Turing machine.

- Macbook Pro, iPhone, Samsung Galaxy, supercomputer, ...
- TOY machine. \qquad stay tuned

Implication 1. Processors are equivalent in terms of which computational problems they can solve.
Implication 2. Can't design processors that can solve more problems.

Evidence supporting the Church-Turing thesis: programming languages

Fact. All of these programming languages are provably equivalent to a Turing-machine.

- Java.
- Python, C, C\#, C++.
\longleftarrow ignoring intrinsic memory limitations
- Fortran, Lisp, Javascript, Matlab, R, Swift, Go, ...
- ..

Implication 1. PLs are equivalent in terms of which computational problems they can solve.
Implication 2. Can't invent PL that can solve more problems.

More evidence supporting the Church-Turing thesis

Fact. All of these models of computation are provably equivalent to a Turing-machine.

model of computation

programming languages	Java, Python, C, C\#, C++, Fortran, Lisp, Javascript, ...
random-access machines	Macbook Pro, iPhone, Samsung Galaxy, TOY, ...
enhanced Turing machines	multiple heads, multiple tapes, 2D tape, nondeterminism
untyped λ-calculus	formal system for defining and manipulating functions
recursive functions	functions dealing with computation on integers
unrestricted grammars	iterative string replacement rules used by linguists
cellular automata	cells which change state based on local interactions
DNA computer	compute using biological operations on DNA
quantum computer	compute using superposition of quantum states

description

Java, Python, C, C\#, C++, Fortran, Lisp, Javascript, ...

Theory of computing: quiz 3

Which model of computation is not universal?
A. Turing machines.
B. DFAs.
C. Java language.
D. iPhone 15 Pro.
E. All of the above models are universal.

Theory of Computing

- introduction
-models of computation
- universality
- computability
- halting prob́lem

Computability

Def. A computational problem is computable if there exists a TM to solve it.
Def. A computational problem is uncomputable if no TM exists to solve it.
equivalently, Java program, iOS app, quantum computer, ...

Theorem. [Turing 1936] The halting problem is uncomputable.
Theorem. [Post 1946] Post's correspondence problem is uncomputable.

Profound implications.

- There exist computational problems that no Turing machine can solve.
- There exist computational problems that no computer can solve.
- There exist computational problems that can't be solved in Java.
many such problems, and many that are important in practice

Implications for programming systems

Q. Why is debugging difficult?
A. All of the following computational problems are uncomputable.

problem

halting problem
totality problem
no-input halting problem
program equivalence
variable initialization
dead-code elimination
memory management

description

Given a function f, does it halt on a given input x ?

Given a function f, does it halt on every input x ?
Given a function f with no inputs, does it halt?

Do two function f and g always return the same value?
Is the variable x initialized before it is used?

Does this statement ever get executed?

Will an object x ever be referenced again?

Uncomputable problems from mathematics

Q. Why are some math calculations difficult?
A. The following computational problems are uncomputable.

problem

description
yes input
no input

Hilbert's $10^{\text {th }}$ problem
definite integration

Given a polynomial equation with integer coefficients, does there exist an integer-valued solution?

$$
\begin{gathered}
6 x^{3} y z^{2}+3 x y^{2}-x^{3}=10 \quad x^{2}+y^{2}=3 \\
(x, y, z)=(5,3,0)
\end{gathered}
$$

Given a rational function $f(x)$ composed of polynomial and trigonometric functions, does the integral $\int_{-\infty}^{\infty} f(x) d x$ exist?

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x \quad \int_{-\infty}^{\infty} \frac{\cos x}{1-x^{2}} d x \\
& \quad=\pi / e
\end{aligned}
$$

More uncomputable problems

Q. Why are so many disciplines difficult?
A. The following computational problems are uncomputable.
problem
polygonal tiling
spectral gap
ray tracing
data compression
virus detection
dynamical systems
network coding
description
Is it possible to tile the plane with copies of a given polygon?

Does a given quantum mechanical system have a spectral gap?
Will a light ray reach some final position in an optical system?
What is the shortest program that will produce a given string?
Is a given computer program a virus?
Is a generalized shift Φ chaotic?
Does a given network admit a coding scheme?
Magic Does a given player has a winning strategy in a game of Magic?

Theory of computing: quiz 4

Which of these computational problems are computable?

A. Given a function f, determine whether it goes into an infinite loop.
B. Given a positive integer n, compute it integer factorization.
C. Both A and B.
D. Neither A nor B.

https://introcs.cs.princeton.edu

TheOry of Computing

- introduction
-models of computation
- universality
- computability
- halting problem

Theory of computing: quiz 5

Does the fruit-problem meme have a solution?
A. Yes.
B. No.
99.99% of people cannot solve this!

Find positive whole values for 0,$\}$, and 8 .

The halting problem

Halting problem. Given a Java function $f()$ and an input x, determine whether $f(x)$ halts.

Ex. [Fermat's last theorem]

```
public static void f(int n) {
    for (int c = 1; true; c++)
        for (int a = 1; a <= c; a++)
            for (int b = 1;b <= c;b++)
            if (Math.pow(a, n) + Math.pow(b, n) == Math.pow(c, n))
                return;
}
```

$f(n)$ halts if and only if there are positive integers a, b, and c such that $a^{n}+b^{n}=c^{n}$

\mathbf{n}	halts?	explanation
1	yes	$1^{1}+1^{1}=2^{1}$
2	yes	$3^{2}+4^{2}=5^{2}$
3	no	Euler 1760
4	no	Fermat 1670
5	no	Dirichlet, Legendre 1825
\vdots	no	Wiles 1995

Ahead. It's impossible to write a Java program to solve halting problem. \qquad If it halts, then you can safely conclude yes. But, if it does not seem to halt, then you don't know when to stop and conclude no.

Warmup: liar's paradox

Liar's paradox. [dates back to ancient Greek philosophers]

THE LIAR PARADOX

sketchplanations

Logical conclusion. Cannot label all statements as true or false. source of difficulty $=$ self-reference

The halting problem is uncomputable

Theorem. [Turing 1936] The halting problem is uncomputable.
Pf sketch. [by contradiction]

- Assume that there exists a function ha7ts() that solves the halting problem. \qquad
a function f and its input x

Proof by contradiction: If a logical argument based on an assumption leads to a contradiction, then that assumption must have been false.

The halting problem is uncomputable

Theorem. [Turing 1936] The halting problem is uncomputable.
Pf sketch. [by contradiction]

- Assume that there exists a function ha7ts() that solves the halting problem.

```
purported solution to the halting problem
public boolean halts(String f, String x) {
    if (/* f(x) ha7ts */ ) return true;
    else return false;
}
```

```
a client
public void strange(String f) {
    if (halts(f, f))
        while (true) { } // infinite loop
}
```

- Write a function strange(f) that goes into an infinite loop if $f(f)$ halts; and halts otherwise.
- Call strange() with itself as argument. (!!)
- if strange(strange) halts, then strange (strange) goes into an infinite loop
- if strange(strange) does not halt, then strange(strange) halts
- This is a contradiction; therefore, halts() cannot exist.

Big ideas

Turing machine. A, simple, formal model of computation.
Duality of programs and data. Encode both as strings and compute with both.
Universality. Concept of general-purpose programmable computers.
Church-Turing thesis. Computable at all = computable with a Turing machine. Computability. There exist inherent limits to computation.

Turing's 1936 paper. One of the most impactful scientific papers of the $20^{\text {th }}$ century. THE ENTSCHEIDUNGSPROBLEM

Credits

image	source	license
David Hilbert	$\underline{\text { Wikimedia }}$	public domain
Kurt Gödel	Wikimedia	public domain
Alonzo Church	Princeton University	
Alan Turing	Science Museum, London	
EDSAC	Computer Laboratory, Cambridge	CC BY 2.0
Vintage Desktop Computer	Adobe Stock	education license
Macbook Pro M1	Apple	
Google Dalles Data Center	Google	
Theory vs. Practice	Ela Sjolie	
Babbage's Analytical Engine	Science Museum, London	CC BY 2.0
DNA Computer	Clean Future	
Black Hole Gravity	Adobe Stock	education license
Lecture Slides © Copyr	2024 Robert Sedgewick a	Kevin Wayne

Credits

image	source	license
iPhone 14 Pro Max	Apple	
Samsung Galaxy Z	Samsung	
IBM Summit Supercomputer	Oak Ridge National Laboratories	
Quantum Computer	Erik Lucero / Google	
Liar's Paradox	$\underline{\text { sketchplanations }}$	
Red Button, Blue Button	$\underline{\text { Martin Svatoš }}$	
Light Bulb Idea	$\underline{\text { Clker-Free-Vector-Images }}$	Pixabay
On Computable Numbers	$\underline{\text { Alan Turing }}$	

