C O1nN p uter S C 1 cCnce ROBERT SEDGEWICK | KEVIN WAYNE

3.3 DESIGNING DATA TYPES

> encapsulation
> immutability

» static variables and methods

COMPUTER
SCIENCE ,
e > exceptions

> special references

https://introcs.cs.princeton.edu

» spatial vectors

https://introcs.cs.princeton.edu

Obijects

Data type. A set of values and a set of operations on those values.

Java class. Java’s mechanism for defining a new data type.

Object. An instance of a data type that has
 State: value from its data type.
* Behavior: actions defined by the data type’s operations.

* |dentity: unique identifier (e.g. memory address).

data type set of values example values operations
String e t "Hello, World" length, concatenate, compare,
sequences of characters o " . .
1 I ¥ COS 126 ih character, substring,...
. L (ERD) . .
Point location in the plane Euclidean distance, ...

(=5,4)

Object-oriented programming (OOP)

Decomposition. Break up a complex programming problem into smaller functional parts.

N

Procedural programming. Implement as a collection of functions.

Object-oriented programming. Implement as a system of interacting objects.

Benefits. Supports the 3 Rs:
« Readability: understand and reason about code.
« Reliability: test, debug, and maintain code.

« Reusability: reuse and share code.

3.3 DESIGNING DATA TYPES

» encapsulation
~immutability

» static variables and méthods

COMPUTER
SCIENCE |
o iy Approsch »-exceptions

e ROBERT SEDGEWICK ,

> special references

httpsi//introcs.cs:princeton.edu

» spatial vectors

https://introcs.cs.princeton.edu

Review: API, client, and implementation

Application programming interface (API). Specifies the set of operations for a data type.
Implementation. Program that implements a data type’s operations. \

Client. Program that uses a data type through its API. contract between
client and implementation

client API implementation

public class Point {
public class Point private final double xO0;

Point p = new Point(x0, y0); private final double yO;

Point(double x, double y)
public Point(double x, double y) {
double distanceTo(Point other) X X0 ;

y = y0;
}

double dist = p.distanceTo(q);

String toString()

‘) 0>

Encapsulation

Encapsulation. Separating clients from implementation details by hiding information.
* Functions encapsulate code.

* Objects encapsulate data and code.

[)
L]
Q..‘\ \'.. ®
o "\‘..
nl oo o g0
g0 - 0° -C
4 o «® Q.
v %)
(]

Abstract data type. A data type whose internal representation is hidden from clients.

Principle. A client does not need to know how a data type is implemented in order to use it.

Benefits.

« Can develop client code and implementation code independently.

* Can change implementation details without breaking clients.

The private access modifier

Private access modifier.

* Cannot directly access a private instance variable (or method) from another file.

 Compile-time error to attempt to do so.

implementation rogue client compile-time error

public class Counter { public class RogueClient { ~/cosl26/00p3> javac-introcs RogueClient.java
private int count; public static void main(String[] args) { RogueClient.java:5: error: count has
private access 1n Counter
Counter counter = new Counter():;

public Counter() { _ counter.count = -16022;
counter.hit();

count = O; A
) C 1 error
counter.count = -16022;
public void hit() {
count++; } T
1 } Al Gore received —16,022 votes
in Volusia County, Florida
¥ in 2000 presidential election
Main benefit. Helps enforce encapsulation. < so that programmers (including you!) won't misuse the data type

Best practice. Declare all instances variables as private. -« requirement in this course

Encapsulation fail

Famous encapsulation failures.
Y2K bug.

e ZIP code vs. ZIP+4 code.

IPv4 vs.

EEKI.Y WORL

|Pv6.

THE COMPUTER CRASH OF THE

T/ I , 2000
W m—

ALL BANKS WILL FAIL!

FOOD SUPPLIES
WILL BE DEPLETED!

ELECTRICITY
WILL BE CUT OFF!

%X THE STOCK MARKET
A AR, S w
VEHICLES USING

COMPUTER CHIPS
WILL STOP DEAD!

TELEPHONES WILL
CEASE TO FUNCTION!

> ""A WORLDWIDE
~ DEPRESSION!

|Pv6

INTERNET PRC

|Pv4

L VERSION 6

BN & S _

INTERNET PROTOKOLL VERSION 4

Designing data types: quiz |

Which of the following instance variables should be declared as private ?

A. The instance variables x and y in Point.
B. The instance variables center and radius in Circle.

The instance variables hours and minutes in Clock.

o 0

The instance variables re and im in CompTex.

E. All of the above.

3.3 DESIGNING DATA TYPES

> encapsulation
> immutability

» static variables and méthods

COMPUTER
SCIENCE |
o iy Approsch »-exceptions

e ROBERT SEDGEWICK ,

> special references

httpsi//introcs.cs:princeton.edu

» spatial vectors

https://introcs.cs.princeton.edu

Immutability

Immutability. A data type is immutable if you can’t change a data-type value once created.

immutable mutable
String Clock
Color Picture
Point Counter
Circle int[]

Immutable

/i(lm)’myoodab(3)/
noun

1. Unchanging over time, or unable
to be changed.

11

Immutability

Immutability. A data type is immutable if you can’t change a data-type value once created.

Advantages of immutability.
» Easier to trace, debug, and reason about code.
* Prevents aliasing bugs.

» Simplifies multi-threaded programs.

Main disadvantage. Overhead of creating (and disposing of) extra objects.

Best practices.

“ Classes should be immutable unless there’s a very good reason
to make them mutable.... If a class cannot be made immutable,
you should still limit its mutability as much as possible.”

— Joshua Bloch (Java architect)

Joshua Bloch e W
for
ava

Effective Java

Third Edition

12

The final access modifier

The access modifier final prevents changes to a variable (after initialization).

Ex. Once a point (x,y) is created, cannot change x or y.

public class Point { ~/cosl26/00p3> javac-introcs Point.java

orivate final double Xx: Point.java:1l: error: cannot assign

orivate final double y: a value to final variable x

X = alpha * x;

public Point(double x0, double y0) {
X = XO0;
y = y0;

public void scaleX(double alpha) {
X = alpha * Xx;
¥ \
compile-time error
(since x is final)

13

The final access modifier

The access modifier final prevents changes to a variable (after initialization).

Advantages.
* Helps enforce immutability.

 Documents that the value will not change.

Best practice. Declare instance variables as final (unless compelling reason not to).

ALL SALES FINAL

N REFUNDS
EXCHANGES

14

Designing data types: quiz 2

Which of the following instance variables should not be declared as final ?

A. The instance variables x and y in Point.
B. The instance variables center and radius in Circle.
C. The instance variables re and im in Complex.

D. The instance variables hours and minutes in Clock.

15

3.3 DESIGNING DATA TYPES

» static variables and methods

https://introcs.cs.princeton.edu

Static vs. instance variables

Instance variable. One variable per object.

Static variable. One variable per class.

Common use case. A global constant.

public class Clock {

private static final int MINUTES_PER_HOUR = 60; one variable
<

private static final int HOURS_PER_DAY = 24; per class

private int hours; - one variable

private int minutes per object

Java convention. Define static variables before instance variables.

17

Static vs. instance methods

Instance method. Can refer to instance variables / call other instance methods.

Static method. Cannot refer to instance variables / call instance methods.

~/cosl126/00p3> javac-introcs Counter.java
Counter.java:13: error: non-static method hit()
cannot be referenced from a static context

public class Counter {
private 1nt count;

hit();
public Counter() { A
count = 0O Counter.java:14: error: non-static variable count
) cannot be referenced from a static context
count++;
A
public void hit() { <«—— instance method 2 errors
count++: (associated with an object)
}
public static void main(String[] args) { < static method
hit(): (associated with the class,
COUNt++ not a specific object)
}

18

3.3 DESIGNING DATA TYPES

> encapsulation
~immutability

» static variables and méthods

COMPUTER
SCIENCE |
o rdsipinary Approceh > excepftions

e ROBERT SEDGEWICK ,

> special references

httpsi//introcs.cs:princeton.edu

» spatial vectors

https://introcs.cs.princeton.edu

Exceptions

Exception. A disruptive event that occurs while a program is running, typically to signal an error.

exception

description

example

ArithmeticException

I1legalArgumentException

NumberFormatException

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

Nul TPointerException

performs invalid arithmetic operation

calls constructor/method with invalid argument

converts string to numeric type

accesses array with invalid index

accesses string with invalid index

uses nul1l when an object is required

1 /0

StdAudio.play("readme.txt")

Integer.parselnt("12X")

al-4]

s.charAt(s.length())

null.toString()

20

Validating arguments

Best practice. If any constructor/method argument is invalid; throw an exception.

public Clock(int h, 1nt m) {

if (h < 0 || h >= HOURS_PER_DAY) {
throw new IllegalArgumentException("invalid hours");

}
if (m < 0 || m >= MINUTES_PER_HOUR) {

throw new IllegalArgumentException("invalid minutes”);

hours = h;
minutes = m;

~/cosl126/00p3> java-introcs BadCallToClock
Exception in thread "main" java.lang.IllegalArgumentException:

1) invalid minutes
’ at Clock.<init>(Clock.java:6)
at BadCallToClock.main(BadCallToClock.java:4)

Clock clock = new Clock (12,

invalid constructor call

throw an exception
if invalid argument

21

Fail-fast principle

Fail-fast principle. Better to abort immediately and noisily (than eventually and silently).

Ex 1. Prefer compile-time error to run-time exception.

Ex 2. Prefer run-time exception to wrong answer.

Cost to fix a bug. Rises steeply over software development cycle.

Silicon Valley meme. “Fail fast, fail often.”
 Experiment freely and learn while trying to achieve objective.

* By quickly finding the failures, you can accelerate learning.

~

- .

'Fail hard, fail fast, fail often. It's the

key to success.' This one | learned
from experience!

— Reshma S aujani —

AZ QUOTES

22

3.3 DESIGNING DATA TYPES

> special references

https://introcs.cs.princeton.edu

The null reference

Null reference. A value that indicates a reference does not refer to any valid object.
 The keyword null is a Java literal for the null reference.

* Can assign the value null to any variable of a reference type.

String s = null;
int len = s.length();

invoke a method or
access an instance variable

Q. What happens if | attempt to manipulate a null reference?

A. Triggers a NullPointerException.

Warning. Null references typically arise in practice because instance variables and array elements

(of reference types) are auto-initialed to nulT.

24

Designing data types: quiz 3

Which of the following produce a Nul1PointerException ?

public class Mystery {
private Point point;
private String name;

A. Mystery x = new Mystery("Hello");
StdOut.printin(x.length());

private Mystery(String s) 1{
String name = s;

B Mystery x = new Mystery("Hello"); }
) StdOut.println(x.distanceToOrigin());
public 1nt length() {
return name. length() ;
C. Both A and B. J
public double distanceToOrigin() {
Point origin = new Point(0.0, 0.0);
D. Neither A nor B return origin.distanceTo(point);

25

Tony Hoare quotes

On null references:

“ I call it my billion-dollar mistake. It was the invention of the null
reference in 1965... This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused

a billion dollars of pain and damage in the last forty years.”

On software design:

“ There are two ways of constructing a software design:. One way is
to make it so simple that there are obviously no deficiencies, and

the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.”

Tony Hoare

26

The this reference

The keyword this is a reference to the object whose instance method or constructor is being called.

public class Point {
private final double x;
private final double y;

public Point(double x, double y) {

this.x = Xx; \ /
instance variables of / this.y = vy;

object being constructed “variable shadowing”

public double distanceTo(Point that) {

double dx = that.x - this.x; | |
double dy = that.y - this.y: :\ instance variables of

object used to invoke method

return Math.sqrt(dx*dx + dy*dy);

Common use case. Use same names for constructor arguments and instance variables.

Best practice. Programmers debate whether to always (or rarely) use this.

27

3.3 DESIGNING DATA TYPES

> encapsulation
~immutability

» static variables and méthods

COMPUTER
SCIENCE |
o iy Approsch »-exceptions

e ROBERT SEDGEWICK ,

> special references

httpsi//introcs.cs:princeton.edu

» spatial vectors

https://introcs.cs.princeton.edu

Crash course on spatial vectors

A spatial vector is an entity that has magnitude and a direction.
* Quintessential mathematical abstraction.

 Many applications in STEM: force, velocity, momentum, ...

operation result
Operations on spatial vectors.
¢ AddItIOn X+y — (XO + yo, xl + yl’ ceoo Xn_l + yn—l) (1,2,3) T (4,5,6) (5,7,9)
 Scaling: ax = (axy, oxy, ..., ax,) 2(1,2,3) (2,4, 6)
» Dot product: xey = (xg-y9 + XV + oo + X1V, 1.2.3) o (4.5.6))

« Magnitude: |[|x|| =vXeX
1(1,2,3)] V14

Vector API

A spatial vector is an entity that has magnitude and a direction.

values

API

vector

(1,2,3)
0,-1,0.5,0,0.25)

public class Vector

description

Vector(double[] coords)

Vector plus(Vector that)
Vector scale(double alpha)
double dot(Vector that)
double magnitude()

String toString()

create a new spatial vector

sum of this vector and that

scalar product of this vector and alpha
dot product of this vector and that
magnitude of this vector

String representation

30

Vector implementation: test client

Best practice. Begin by implementing a simple test client that tests all methods.

public static void main(String[] args
double[] X 3.0, 4.0

double[] vy 2.0, 3.0
Vector a hew Vector(x

Vector b = new Vector(y

S L " test client
StdOut.printin(’a =
StdOut.printin('b !

a
n = b
StdOut.printin("a + b = " a.plus(b
StdOut.println("2a — a.scale(2.0
StdOut.printin("a « b = " a.dot(b
StdOut.printin(”|a| = " + a.magnitude

~/cosl26/00p3> java-introcs Vector
(3.0, 4.0)
(-2.0, 3.0)
(1.0, 7.0) D

what we expect, once the
the implementation is done

(6.0, 8.0)
6.0
5.0

Vector implementation: instance variables and constructor

Instance variables. Define data-type values.

Internal representation. Sequence of real numbers.
each vector corresponds to its

own sequence of real numbers
(needs its own array instance variable)

public class Vector {

convenient instance variable
(optional)

private final int n; <«
private final double[] coords;

instance variables

instance methods

32

Designing data types: quiz 4

How to implement Vector constructor?

A. public Vector(double[] a) {
n = a.length;
coords = a;:

B. public Vector(double[] a) {
n = a.length;
double|[] coords = a;

public Vector(double[] a) {
n = a.length;
for (int 1 = 0; 1 < a.length; 1++)
coords[1] = a[1];

D. None of the above.

33

Without a defensive copy

public class Vector {

private final 1int n;

private final double[] coords;

public Vector(double[] a) {
n = a.length;

coords = a;

vector.n vector.coords|[]

3 ®

double[] x = { 0.0, 3.0, 4.0 };
Vector vector = new Vector(x);

x[0] = -12.0;
StdOut.printin(vector.magnitude());

V122 +32+42 =13

34

With a defensive copy

public class Vector { double[] x = { 0.0, 3.0, 4.0 };
private final int n; Vector vector = new Vector(x);
private final double|[] coords; x[0] = -12.0;

StdOut.printin(vector.magnitude());
public Vector(double[] a) {
n = a.length;
coords = new double[a.Tlength]: V0> +32+42 =5

for (int 1 = 0; 1 < a.length; 1++)

coords|1] = al[1];

vector.n vector.coords|[] X[]

3 ® ®

-EEEEEN
'

35

Vector implementation: constructor

Constructors. Create and initialize new objects.

constructors

public class Vector {
private final double[] coords;
private final int n;

public Vector(double[] a) {
n = a.length;
coords = new double[n];
for (int 1 =0; 1 < n; 1++) {
coords[i] = al[i]: < “defensive copy”

Best practice. Defensively copy mutable objects.

36

Vector implementation: instance methods

Instance methods. Define data-type operations.

public class Vector {

instance methods

public Vector plus(Vector that) {
checkCompatible(this.n, that.n);
Vector result new Vector(n);
for (Aint 1 =0; 1 <n; 1++) {
result.coords|[1] = this.coords[1] + that.coords|[1];

}

return result;

a reusable helper method
(can be static)

private static void checkCompatible(int nl, 1int n2) { =<
1f (n1 !'= n2) {
throw new IllegalArgumentException(”...");

Vector implementation: instance methods

Instance methods. Define data-type operations.

public class Vector {

public double dot(Vector that) {
checkCompatible(this.n, that.n);
double sum = 0.0;
for (int 1 =0; 1 <n; 1++) {
sum += this.coords[1] * that.coords[1];

}

return sum:

public double magnitude() {
return Math.sqrt(this.dot(this));

) - a rare time where the
this keyword is indispensable

instance methods

38

Vector implementation

instance
variables

constructor

instance
methods

public class Vector {

private final int n;

private final double[] coords;

public Vector(double[] a) {
n = a.length;

coords = new double[n];
for (int 1 = 0; 1 < n; 1++) {
coords[i] = al[i];

public Vector plus(Vector that) {
Vector result = new Vector(n);
for (int i = 0; i < n; i++) {

result.coords|[1] = this.coords[1] + that.coords|[1];

}

return result;

public double dot(Vector that) {
double sum = 0.0;

> for (int 1 =0; 1 < n; 1++) {
sum += this.coords[1] * that.coords[1];

}

return sum;

public Vector scale(double alpha) {
Vector result = new Vector(n);
for (Aint 1 =0; 1 <n; 1++) {
result.coords[1] = alpha * this.coords[1];

¥

return c;

public double magnitude() {
return Math.sqrt(this.dot(this));

public static void main(String[] args) {
double[] x = { 3.0, 4.0 };
double[] v = { -2.0, 3.0 };

test client

39

Summary

Data type. A set of values and a set of operations on those values.

Java class. Java’s mechanism for defining a new data type.

Object. An instance of a data type that has
 State: value from its data type.
* Behavior: actions defined by the data type’s operations.

* |dentity: unique identifier (e.g. memory address).

API, client, implementation. Separate implementation from client via API.
Encapsulation. Hide internal representation of implementation from clients.
Immutability. Data-type values cannot change.

Fail-fast principle. Find errors early in development.

40

Credits

image source license
OOP Adobe Stock education license
Modular Design Modular Management
Client Avatars Adobe Stock education license
Contract Icon Adobe Stock education license
Implementation Icon Adobe Stock education license
Y2K Bug Weekly World News
ZIP+4 Code firstlogic.com
IP4 vs. IP6 Adobe Stock education license
Pharmacy Pill Adobe Stock education license
Private Sign on a Door Adobe Stock education license
Fail Fast Adobe Stock education license

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/oop-object-oriented-programming-acronym-business-concept-background-vector-illustration-concept-with-keywords-and-icons-lettering-illustration-with-icons-for-web-banner-flyer-landing/451520975
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization
https://stock.adobe.com/images/speech-bubble-concept-feedback-female-avatar-collection-customer-feedback-on-info-graphic-app-and-website-creative-testimonial-template-with-different-shapes-vector-illustration/407464386
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-contract-icon-agreement-and-signature-pact-accord-convention-symbol-flat/89219791
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/implementation-icon-vector-trendy-flat-implementation-icon-from-general-collection-isolated-on-white-background-vector-illustration-can-be-used-for-web-and-mobile-graphic-design-logo-eps10/304217781
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://pastdaily.com/2019/12/30/december-30-1999-looking-for-a-terrorist-looking-for-a-shooter-looking-for-the-y2k-bug/
https://firstlogic.com/insights/zip-4-code
https://stock.adobe.com/images/ipv4-vs-ipv6-3d/45766850
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/pharmacy-pills-capsule-medicine-healthcare-3d-illustration/276035828
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/private-sign-on-a-door/119685570
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/fail-fast-symbol-turned-a-wooden-cube-with-concept-words-fail-fast-on-beautiful-orange-table-orange-background-copy-space-business-and-fail-fast-concept/491799986
https://stock.adobe.com/enterprise-conditions#educationLicenses

