
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/14/24 10:16  AM

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard drawing

‣ animation

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

2

any program you might want to write

objects

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

conditionals loops
interact with the outside world

text I/O

graphics, sound, and image I/O

functions libraries

Input and output

Goal. Write Java programs that interact with the outside world via input and output devices.  
 

Input devices.
 
 
 
 
 
 
Output devices.

3

storage network webcamtrackpad microphone

storage network braille displayearbuds

keyboard

video display

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard drawing

‣ animation
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Our approach.

・Define input and output abstractions.

・Use operating system (OS) functionality to connect our Java programs to physical devices.

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Input–output abstractions (so far)

5

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Review: terminal

Terminal. A text-based interface for interacting with programs, files, and devices.

6

VT-100 terminal emulator

output to standard output input from command line

Review: command-line arguments

Command-line arguments. Provide text input to a program.
 
Basic properties.

・Arguments provided to a program by typing after program name.

・Arguments provided to program before execution.

・Java: string arguments available in main() as args[0], args[1], …

7

public class HelloGoodbye {
 public static void main(String[] args) {
 System.out.print("Hello ");
 System.out.println(args[0] + ".");
 System.out.print("Goodbye ");
 System.out.println(args[1] + ".");
 }
}

~/cos126/io> java HelloGoodbye Kevin Alan
Hello Kevin.
Goodbye Alan.

~/cos126/io> java HelloGoodbye Arya Zahara
Hello Arya.
Goodbye Zahara.

~/cos126/io> java HelloGoodbye Aðalbjörg "Hua Fei"
Hello Aðalbjörg.
Goodbye Hua Fei.

args[0] args[1]

use quotes

command-line arguments

Review: standard output

Standard output stream. An abstraction for an output sequence of text.
 
Basic properties.

・The call System.out.println() appends text to the standard output stream.

・By default, the standard output stream is connected to the terminal.

・No limit on amount of output.

8

public class RandomUniform {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 for (int i = 0; i < n; i++) {
 System.out.println(Math.random());
 }
 }
}

~/cos126/io> java RandomUniform 4
0.9320744627218469
0.4279508713950715
0.08994615071160994
0.6579792663546435

~/cos126/io> java RandomUniform 1000000
0.09474882292442943
0.2832974030384712
0.1833964252856476
0.2952177517730442
0.8035985765979008
...

produces
lots of output

Input–output abstractions (standard input)

Next step. Add a text input stream.

9

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Standard input

Standard input stream. An abstraction for an input sequence of text.
 
Advantages over command-line arguments:

・No limit on the amount of input.

・Conversion to primitive types is explicitly handled.

・Can provide input interactively, while the program is executing.

10

JAVA PROGRAM

standard input stream

Standard input library

StdIn. Our library for reading strings and numbers from standard input.

11

public class StdIn description

static boolean isEmpty() true if no more values, false otherwise

static int readInt() read a value of type int

static double readDouble() read a value of type double

static boolean readBoolean() read a value of type boolean

static String readString() read a value of type String

 ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

Standard output library

StdOut. Our library for printing strings and numbers to standard output.
 
 
 
 
 
 
 
 
 
 
 
 
 
Q. How different from System.out.println() ?
A. Mostly the same, but output is independent of system and locale.

12

we’ll use StdOut from now on

public class StdOut description

static void print(String s) print s on the output stream

static void println() print a newline on the output stream

static void println(String s) print s, then a newline on the stream

static void printf(String f, ...) print formatted output

⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

Standard input warmup

Interactive user input. User can provide input while the program is running.
 
 
 
 
 
 
 
 
 
 
 
 
Remark 1. By default, standard input stream comes from terminal.
Remark 2. Input and output can be interleaved.
Remark 3. Run-time exception if user enters incompatible input.

13

public class AddTwoInts {
 public static void main(String[] args) {
 StdOut.print("Type the first integer: ");
 int a = StdIn.readInt();
 StdOut.print("Type the second integer: ");
 int b = StdIn.readInt();
 int sum = a + b;
 StdOut.println("Their sum is " + sum);
 }
}

~/cos126/io> java-introcs AddTwoInts
Type the first integer:
Type the second integer:
Their sum is 3

~/cos126/io> java-introcs AddTwoInts
Type the first integer:
Type the second integer:
Their sum is 126

~/cos126/io> java-introcs AddTwoInts
Type the first integer:
Type the second integer:
java.util.InputMismatchException: attempts
to read an ‘int' value from standard input,
but the next token is "twenty-six"

1
2

100
26

100
twenty-six

Average the numbers on the standard input stream

Goal. Read a stream of numbers (from standard input) and print their average (to standard output).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. No limit on amount of input.

14

public class Average {
 public static void main(String[] args) {
 double sum = 0.0; // cumulative total
 int n = 0; // number of values

 while (!StdIn.isEmpty()) {
 double x = StdIn.readDouble();
 sum = sum + x;
 n++;
 }

 StdOut.println(sum / n);
 }
}

~/cos126/io> java-introcs Average
1.0
2.0
4.0
2.0
<Ctrl-D>
2.25

~/cos126/io> java-introcs Average
10.0 5.0 6.0 3.0
7.0 32.0
<Ctrl-D>
10.5

signifies end of standard input
(<Ctrl–Z><Enter> on Windows)

values separated
by whitespace

“streaming algorithm”
(avoids storing data)

Input and output: quiz 1

What does the following program do with the given input?

A. Prints "X", "Y", and "Z".

B. Throws an exception.

C. Both A and B.

D. Neither A nor B.

15

public class Mystery {
 public static void main(String[] args) {
 int n = args.length;
 for (int i = 0; i < n; i++) {
 String s = StdIn.readString();
 StdOut.println(s);
 }
 }
}

~/cos126/io> java-introcs Mystery A B C D E
X Y Z
<Ctrl-D>
X
Y
Z
Exception in thread "main"
java.util.NoSuchElementException: attempts to
read a 'String' value from standard input,
but no more tokens are available

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard drawing

‣ animation
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Redirecting standard output

Terminal. By default, standard output is connected to the terminal.
 
Redirecting standard output. Send standard output to a file (instead of the terminal).

RANDOMUNIFORM

standard output stream file

17

~/cos126/io> java-introcs RandomUniform 1000000 > data.txt
[no output]

~/cos126/io> more data.txt
0.09474882292442943
0.2832974030384712
0.1833964252856476
0.2952177517730442
0.8035985765979008
...

redirect
standard output

filename

display content
of a file

Redirecting standard input

Terminal. By default, standard input is connected to the terminal.  

Redirecting standard input. Read standard input from a file (instead of the terminal).

18

~/cos126/io> more data.txt
0.09474882292442943
0.2832974030384712
0.1833964252856476
0.2952177517730442
0.8035985765979008
...

~/cos126/io> java-introcs Average < data.txt
0.4947655567740991

redirect
standard input filename

file

AVERAGE

standard input stream

Piping

Piping. Connect standard output of one program to standard input of another program.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. No limit within programs on amount of data to process.

19

~/cos126/io> java-introcs RandomUniform | java-introcs Average
0.4997970473016028

~/cos126/io> java-introcs RandomUniform | java-introcs Average
0.5002071875644842

RANDOMUNIFORM standard output stream AVERAGEstandard input stream

pipe operator

~/cos126/io> say --voice Bad < HelloWorld.java

Input and output: quiz 2

The OS X command say reads text from standard input and synthesizes it as
audible speech. Which of the following commands will speak "Hello, World" ?

A.  

 

B.  

C.  

D.

20

overwrites (!) the file HelloWorld.java

says “public class HelloWorld …”

says “Hello World dot Java”

~/cos126/io> say > HelloWorld.java

~/cos126/io> java HelloWorld | say

~/cos126/io> say < HelloWorld.java

~/cos126/io> say
HelloWorld.java
<Ctrl-D>

says “Hello, World”

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard drawing

‣ animation
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Input–output abstractions (standard drawing)

Next step. Add the ability to create a drawing.

22

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Standard drawing library: drawing methods

StdDraw. Our library for drawing and animating geometric shapes in a graphical window.

23

public class StdDraw description

static void line(double x0, double y0, double x1, double y1) draw line segment between (x0, y0) and (x1, y1)

static void point(double x, double y) draw point (x, y)

static void circle(double x, double y, double r) draw circle of radius r centered at (x, y)

static void square(double x, double y, double r) draw square of half-width r centered at (x, y)

static void polygon(double[] x, double[] y) draw polygon connecting points (xi, yi)

static void text(double x, double y, String text) draw text, centered at (x, y)

static void picture(double x, double y, String filename) draw GIF, JPG or PNG image, centered at (x, y)

 ⋮ ⋮

available with javac-introcs
and java-introcs commands

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

to manipulate images,
use StdPicture library

Standard drawing library: control methods

StdDraw. Our library for drawing and animating geometric shapes in a graphical window.

24

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

StdDraw.BLACK, StdDraw.WHITE,
StdDraw.GRAY, StdDraw.RED,
StdDraw.GREEN, StdDraw.BLUE,
StdDraw.PRINCETON_ORANGE, …

public class StdDraw description default value

static void setCanvasSize(int width, int height) set the canvas size to width-by-height 512-by-512

static void setXscale(double x0, double x1) set x-range to [x0, x1] [0, 1]

static void setYscale(double y0, double y1) set y-range to [y0, y1] [0, 1]

static void setPenRadius(double radius) set the pen radius to radius 0.002

static void setPenColor(Color color) set the pen color to color black

 ⋮ ⋮

Goal. Draw filled diamond and two filled circles.

~/cos126/io> java-introcs Heart

Your first drawing

25

public class Heart {
 public static void main(String[] args) {
 StdDraw.setXscale(-1.5, +1.5);
 StdDraw.setYscale(-1.5, +1.5);
 StdDraw.setPenColor(StdDraw.PINK);

 // draw filled diamond
 double[] xs = { -1, 0, 1, 0 };
 double[] ys = { 0, -1, 0, 1 };
 StdDraw.filledPolygon(xs, ys);

 // draw two filled circles
 double radius = Math.sqrt(2) / 2;
 StdDraw.filledCircle(+0.5, 0.5, radius);
 StdDraw.filledCircle(-0.5, 0.5, radius);
 }

}

trace of drawing

(−1.5, −1.5)

(0, –1)

(1.5, 1.5)

(1, 0)(–1, 0)

(0, 1)

(0.5, 0.5)

2 / 2

Goal. Read points (from standard input) and plot.

public class PlotPoints {
 public static void main(String[] args) {

 double xmin = StdIn.readDouble();
 double ymin = StdIn.readDouble();
 double xmax = StdIn.readDouble();
 double ymax = StdIn.readDouble();

 StdDraw.setXscale(xmin, xmax);
 StdDraw.setYscale(ymin, ymax);

 while (!StdIn.isEmpty()) {
 double x = StdIn.readDouble();
 double y = StdIn.readDouble();
 StdDraw.point(x, y);
 }

 }
}

Data visualization

26

~/cos126/io> more USA.txt
669905.0 247205.0 1244962.0 700000.0
 1097038.8890 245552.7780
 1103961.1110 247133.3330
 1104677.7780 247205.5560
 ...

~/cos126/io> java-introcs PlotPoints < USA.txt

sequence of points
(13, 509 USA cities)

bounding box

bounding box

rescale

read points
and plot

(699905, 247205)

Goal. Read points (from standard input) and plot.
~/cos126/io> more StarryNight.txt
669905.0 247205.0 1244962.0 700000.0
 1097038.8890 245552.7780
 1103961.1110 247133.3330
 1104677.7780 247205.5560
 ...

~/cos126/io> java-introcs PlotPoints < StarryNight.txt

sequence of points
(223,534 dots)

bounding box

Data visualization

27

public class PlotPoints {
 public static void main(String[] args) {

 double xmin = StdIn.readDouble();
 double ymin = StdIn.readDouble();
 double xmax = StdIn.readDouble();
 double ymax = StdIn.readDouble();

 StdDraw.setXscale(xmin, xmax);
 StdDraw.setYscale(ymin, ymax);

 while (!StdIn.isEmpty()) {
 double x = StdIn.readDouble();
 double y = StdIn.readDouble();
 StdDraw.point(x, y);
 }

 }
}

bounding box

rescale

read points
and plot

Goal. Plot in the interval .
Method. Take n + 1 samples, evenly spaced in interval.

y = sin(4x) + sin(20x) 0 ≤ x ≤ π

~/cos126/io> java-introcs PlotFunction 5~/cos126/io> java-introcs PlotFunction 10~/cos126/io> java-introcs PlotFunction 25~/cos126/io> java-introcs PlotFunction 50~/cos126/io> java-introcs PlotFunction 100~/cos126/io> java-introcs PlotFunction 10000~/cos126/io> java-introcs PlotFunction 1000

Plotting a function

28

public class PlotFunction {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);

 double[] x = new double[n+1];
 double[] y = new double[n+1];
 for (int i = 0; i <= n; i++) {
 x[i] = Math.PI * i / n;
 y[i] = Math.sin(4*x[i]) + Math.sin(20*x[i]);
 }

 StdDraw.setXscale(0, Math.PI);
 StdDraw.setYscale(-2.0, +2.0);
 for (int i = 0; i < n; i++)
 StdDraw.line(x[i], y[i], x[i+1], y[i+1]);

 }
}

how many samples is enough?

A B

C

The chaos game

Chaos game. Draw an equilateral triangle; make one vertex the current point.

・Pick a vertex uniformly at random.

・Draw a point halfway between that vertex and the current point.

・Repeat.
 
 
 
 
 
 
 
 
 
 
 
Q. What figure emerges?

29

i vertex

0 C
1 B
2 C
3 A
4 B
5 A
6 A
7 A
8 C
9 B
10 B
… …

~/cos126/io> java-introcs ChaosGame 10000

The chaos game: implementation

30

public class ChaosGame {
 public static void main(String[] args) {
 int trials = Integer.parseInt(args[0]);
 double c = Math.sqrt(3) / 2;
 double[] cx = { 0.0, 1.0, 0.5 };
 double[] cy = { 0.0, 0.0, c };

 StdDraw.setPenRadius(0.01);
 double x = 0.0, y = 0.0;
 for (int t = 1; t <= trials; t++) {
 int r = (int) (Math.random() * 3);
 x = (x + cx[r]) / 2.0;
 y = (y + cy[r]) / 2.0;
 StdDraw.point(x, y);
 }

 }
}

vertices of
triangle

midpoint

Sierpinski triangles in the wild

31

Input and output: quiz 3

What is the result of executing the following code fragment?

32

// black circle (center)
StdDraw.setPenColor(StdDraw.BLACK);
StdDraw.filledCircle(0.5, 0.5, 0.25);

// small blue circle (upper left)
StdDraw.setPenColor(StdDraw.BLUE);
StdDraw.filledCircle(0.3, 0.7, 0.125);

// small red circle (upper right)
StdDraw.setPenColor(StdDraw.RED);
StdDraw.filledCircle(0.7, 0.7, 0.125);

A. B. C.

1.5 INPUT AND OUTPUT

‣ standard input and output

‣ redirection and piping

‣ standard drawing

‣ animation
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Computer animation

To create an animation, repeat the following:

・Clear the drawing window.

・Draw next animation frame.

・Pause for a short period of time.
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Animation loop produces the illusion of motion.

34

12 animation frames

0 1 2 3 4 5 6 7 8 9 10 11

Goal. Read animation frames from command line and display in an animation loop.

~/cos126/io> ls dance*.png
dance00.png dance03.png dance06.png dance09.png
dance01.png dance04.png dance07.png dance10.png
dance02.png dance05.png dance08.png dance11.png

~/cos126/io> java-introcs AnimationLoop dance*.png

~/cos126/io> ls tiger*.png
tiger00.png tiger03.png tiger06.png tiger09.png
tiger01.png tiger04.png tiger07.png tiger10.png
tiger02.png tiger05.png tiger08.png tiger11.png

~/cos126/io> java-introcs AnimationLoop tiger*.png

Animation loop

35

public class AnimationLoop {
 public static void main(String[] args) {
 int n = args.length;

 for (int i = 0; true; i++) {
 String filename = args[i % n];
 StdPicture.read(filename);
 StdPicture.show();
 StdPicture.pause(50);
 }

 }
}

“wildcard”

animation
loop

50ms between frames
(20 frames per second)

cycles between
0 and n−1

“cel” animation

Standard drawing library: animation methods

StdDraw. Our library for drawing and animating geometric shapes in a graphical window.  
 
 
 
 
 
 
 
 
 
 
 

Double buffering. Defer drawing shapes on screen until next call to StdDraw.show().

・Smoother animation.

・Faster (when drawing many shapes).
36

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

public class StdDraw description

static void enableDoubleBuffering() enable double buffering

static void disableDoubleBuffering() disable double buffering

static void clear(Color color) clear the background to color

static void show() show the drawing in a window

static void pause(int t) pause for t milliseconds

 ⋮ ⋮

drawing to screen is slow;
typical screen refresh rate = 60 Hz

Moving ball

Moving ball. [with constant velocity]

・Ball has position and velocity .

・To move ball, update position to .
 
 
 
 
 
To animate a moving ball, repeat the following:

・Clear the drawing window.

・Move the ball.

・Draw the ball.

・Pause for a short period of time.

(rx , ry) (vx , vy)

(rx + vx , ry + vy)

37

(rx , ry)

(rx + vx , ry + vy)

next animation frame

~/cos126/io> java-introcs MovingBall

Moving ball

38

public class MovingBall {
 public static void main(String[] args) {
 double rx = 0.0, ry = 0.0;
 double vx = 0.001, vy = 0.002;
 double radius = 0.10;

 StdDraw.setXscale(-1.0, +1.0);
 StdDraw.setYscale(-1.0, +1.0);
 StdDraw.enableDoubleBuffering();

 while (true) {
 rx = rx + vx;
 ry = ry + vy;
 StdDraw.clear(StdDraw.WHITE);
 StdDraw.filledCircle(rx, ry, radius);
 StdDraw.show();
 StdDraw.pause(20);
 }

 }
}

move the ball

Bouncing ball

To “bounce” the ball off the walls:

・If the ball hits a vertical wall, set to .  
 
 
 
 

・If the ball hits a horizontal wall, set to .
 
 
 
 
 
 
 
Physics. We’re ignoring gravity, spin, friction, inelasticity, air resistance, …

vx −vx

vy −vy

39

x = +1x = −1

y = +1

y = −1

~/cos126/io> java-introcs BouncingBall

Bouncing ball

40

public class BouncingBall {
 public static void main(String[] args) {
 double rx = 0.480, ry = 0.860;
 double vx = 0.015, vy = 0.023;
 double radius = 0.1;

 StdDraw.setXscale(-1.0, +1.0);
 StdDraw.setYscale(-1.0, +1.0);
 StdDraw.enableDoubleBuffering();

 while (true) {
 rx = rx + vx;
 ry = ry + vy;
 if (Math.abs(rx) + radius >= 1.0) vx = -vx;
 if (Math.abs(ry) + radius >= 1.0) vy = -vy;
 StdDraw.clear(StdDraw.WHITE);
 StdDraw.filledCircle(rx, ry, radius);
 StdDraw.show();
 StdDraw.pause(20);
 }
 }
}

bounce
off walls

Standard audio library

StdAudio. Our library for processing digital audio.

41

public class StdAudio description

static int SAMPLE_RATE 44100 (CD quality audio)

static void play(double sample) play the sample

static void play(double[] sample) play the samples

static void play(String filename) play the audio file
(do not execute subsequent code until done playing)

static void playInBackground(String filename) play the audio file in a background thread
(execute subsequent code while playing)

static double[] read(String filename) read the samples from an audio file

 ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

Deluxe bouncing ball

42

while (true) {
 rx = rx + vx;
 ry = ry + vy;

 // bounce off vertical walls
 if (Math.abs(rx) + radius > 1.0) {
 vx = -vx;
 StdAudio.playInBackground("BallTap.wav");
 }

 // bounce off horizontal walls
 if (Math.abs(ry) + radius > 1.0) {
 vy = -vy;
 StdAudio.playInBackground("BlockHit.wav");
 }

 StdDraw.clear(StdDraw.BOOK_LIGHT_BLUE);
 StdDraw.picture(rx, ry, "ball.png", 2*radius, 2*radius);
 StdDraw.show();
 StdDraw.pause(20);
} draws picture

(resized to specified width and height)

plays
sound effect

~/cos126/io> java-introcs DeluxeBouncingBall

StdDraw.clear(StdDraw.BOOK_LIGHT_BLUE);

while (true) {
 rx = rx + vx;
 ry = ry + vy;
 if (Math.abs(rx) + radius > 1.0) vx = -vx;
 if (Math.abs(ry) + radius > 1.0) vy = -vy;
 StdDraw.clear(StdDraw.BOOK_LIGHT_BLUE);
 StdDraw.picture(rx, ry, "ball.png", 2*radius, 2*radius);
 StdDraw.show();
 StdDraw.pause(20);
}

Input and output: quiz 4

What happens if we clear the screen outside the animation loop (instead of inside it)?

A. White only.

B. Black only.

C. See a trace of the ball’s entire path.

D. Compile-time error.

43

Bouncing ball extensions

44

multiple balls elastic collisions gravity

Input–output abstractions

Summary. Input and output for text, pictures, drawings, and audio.

45

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

Computer Monitor iStock standard license

DEC VT100 Terminal Wikimedia CC BY-SA 4.0

Mandrill USC SIPI Image Database

Starry Night Stipple Julia Ying ’26 by author

Sierpinski Coca Cola Paul Bourke

The Legend of Sierpinski Sheilakh

Sierpinski Pennies Pinterest

Sierpinski Candy Corn Pinterest

Sierpinski Pyramid Wikimedia

Sierpinski Cookie unknown

https://www.istockphoto.com/photo/computer-monitor-gm157330848-6030817
https://www.istockphoto.com/legal/license-agreement
https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal_transparent.png
https://creativecommons.org/licenses/by-sa/4.0/
https://sipi.usc.edu/database/database.php?volume=misc
http://paulbourke.net/fractals/polyhedral/
https://www.deviantart.com/sheilakh/art/The-Legend-of-Sierpinski-308953447
https://www.pinterest.ca/pin/438397344972799156/
https://www.pinterest.com/pin/sierpinski-candy-corn-triangle-what-mathematical-questions-can-you-ask--169377635958067477/
https://wiki.i-edu.ru/mediawiki/index.php/%D0%A4%D0%B0%D0%B9%D0%BB:%D0%A8%D0%B0%D0%BF%D0%BA%D0%B0%D0%A4%D1%80%D0%B0%D0%BA%D1%82.jpg

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

Dancing Characters Mark Knight

Tiger Animation Frames Adobe Stock education license

Beach Ball Open Clip Art public domain

Sound Effects Mixkit Mixkit free license

Pool Balls Openclipart public domain

https://marmoset.co/posts/animate-dancing-fellows-using-sub-loops-hexels/
https://stock.adobe.com/images/tiger-run-cycle-animation-sequence/292133642
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://openclipart.org/detail/325276/beach-ball
https://creativecommons.org/publicdomain/zero/1.0/
https://mixkit.co/free-sound-effects/game/
https://mixkit.co/license/#sfxFree
https://openclipart.org/artist/casino?p=3
https://creativecommons.org/publicdomain/zero/1.0/

