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Abstract— This paper presents a machine-learning classifier
where computations are performed in a standard 6T SRAM
array, which stores the machine-learning model. Peripheral
circuits implement mixed-signal weak classifiers via columns of
the SRAM, and a training algorithm enables a strong classifier
through boosting and also overcomes circuit nonidealities, by
combining multiple columns. A prototype 128 × 128 SRAM
array, implemented in a 130-nm CMOS process, demonstrates
ten-way classification of MNIST images (using image-pixel fea-
tures downsampled from 28 × 28 = 784 to 9 × 9 = 81, which
yields a baseline accuracy of 90%). In SRAM mode (bit-cell
read/write), the prototype operates up to 300 MHz, and in classify
mode, it operates at 50 MHz, generating a classification every
cycle. With accuracy equivalent to a discrete SRAM/digital-MAC
system, the system achieves ten-way classification at an energy
of 630 pJ per decision, 113× lower than a discrete system with
standard training algorithm and 13× lower than a discrete system
with the proposed training algorithm.

Index Terms— Analog computation, classification, image
detection, in-memory computation, machine learning.

I. INTRODUCTION

MACHINE-LEARNING algorithms enable data-driven
models for inference, and are thus playing an impor-

tant role in sensing applications where correlations between
embedded signals and inferences of interest are complex and
difficult to model analytically. In many such applications,
there is the need for always-on sensing and inference, so that
systems can respond as specific events of interest occur. The
challenge is that the state-of-the art machine-learning models
can be complex, requiring several millijoules of energy per
decision [1]–[3]. An alternative is the approach in Fig. 1. Here,
an ultralow-energy detector, still employing machine-learning
models to address the complex correlations, provides some-
what coarser but continuous detection, to selectively activate
a full-functioned node (note, the sensor energy shown [4] may
also be reduced, for instance by accessing only a subset of the
imager pixels required for coarse detection).

Looking at the energy for such detection shows that memory
accessing can dominate. The reason is that data-driven models
often do not have compact parametric representations, and
their access from even modest-sized memories poses orders-
of-magnitude higher energy than computation (e.g., 20–100 pJ
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Fig. 1. Architecture for always-on sensing and inference, based on a low-
energy coarse detector to trigger a full-functioned node.

per access of 16-b word from 32 kB to 1 MB memory
versus 1 pJ per multiply, in 45-nm CMOS [5]). An under-
lying limitation emerges in current architectures for digital
accelerators, which separate data storage from computation.
Storing the data fundamentally associated with a computation
requires area, and thus, its communication to the location of
computation incurs energy and throughput cost, which can
dominate. This has motivated thinking about architectures that
integrate some forms of memory and compute [6]–[10]. This
paper presents a machine-learning classifier where data storage
and computation are combined in a standard 6T SRAM [10],
overcoming this limitation.

This paper is organized as follows. Section II provides an
overview of the in-memory-classifier architecture. Section III
presents the algorithm for training the classifier, particu-
larly to overcome circuit limitations. Section IV presents
circuit-level design details, and Section V presents prototype-
measurement and application-demonstration results. Finally,
Section VI analyzes the proposed architecture with respect
to the fundamental limitation identified above for tradi-
tional digital accelerators, and Section VII concludes this
paper.

II. SYSTEM OVERVIEW

Fig. 2 shows the architecture of the proposed in-memory
classifier. It consists of a standard 6T bit-cell array, and
periphery for two modes of opertation. In the SRAM mode,
the operation is typical read/write of digital data. This is how
machine-learning models derived from training are stored in
bit cells. In the Classify Mode, all wordlines (WLs) are driven
at once to analog voltages. Thus, parallel operation of all bit
cells is involved (by comparison, and in the SRAM mode,
only one WL is driven at a time). Each analog WL voltage
corresponds to a feature in a feature vector we wish to classify.
The features are provided as digital data, loaded through the
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Fig. 2. Architecture of in-memory classifier, showing periphery for two
modes of operation.

feature-vector buffer, and analog voltages are generated using
a WLDAC in each row.

In the Classify Mode, each SRAM column forms a weak
classifier. In machine learning, a weak classifier is one that
cannot be trained to fit arbitrary data distributions, and a
strong classifier is one that can be. Due to fitting errors, a
weak classifier typically has low performance in real-world
application. For example, a linear classifier is a weak classifier,
because it only implements linear decisions boundaries in a
feature space, where generally feature data may take on com-
plex distributions. On the other hand, a strong classifier (e.g.,
support-vector machine with radial-basis-function kernel) can
form arbitrary decision boundaries for separating such data
distributions. Thus, a strong classifier is ultimately required;
but, below, the operation of the column-based weak classifier
is first described.

A. Column-Based Weak Classifier

In a standard linear classifier, computation of a decision d is
shown in 1, where xi corresponds to elements from a feature
vector �x , and wi corresponds to weights in a weight vector �w,
derived from training

d = sgn

(
N∑

i=1

wi × xi

)
. (1)

As shown in Fig. 3, in the Classify Mode, each column of
the SRAM performs a similar computation. First, the bit-line
pair (BL/BLB) is precharged. Then, the WLs are driven with
analog voltages representing the feature values xi , leading to
corresponding bit-cell currents IBC,i . Each IBC,i is applied to
either BL or BLB depending on the data stored in the bit cell.
Thus, treating BL/BLB as a differential voltage signal, the
stored data can be thought of as multiplying a feature value
(represented as IBC,i ), by a weight of −1 or +1, respectively.
Finally, currents from all bit cells are summed together on
BL/BLB resulting in aggregated discharge, and a comparator
provides sign thresholding.

Fig. 3. Column-based weak classifier within the in-memory classifier
architecture.

Thus, the structure operates as a classifier, but one that
is even weaker than a linear classifier, because the bit-cell
currents are nonideal (due to variation and nonlinearity) and
the weights are restricted to +/−1. Section III presents a
machine-learning algorithm for achieving a strong classifier,
specifically addressing these points.

III. CLASSIFIER TRAINING

A specialized training algorithm is required to address
the nonidealities of the column-based weak classifiers.
Boosting [11] is an approach from machine learning for
constructing a strong classifier from multiple base weak
classifiers. In addition to the typical problem that boosting
addresses, namely overcoming errors due to inadequate fitting
of the weak classifiers, the column-based classifiers raise two
additional challenges. First, their substantial circuit nonideali-
ties (bit-cell variations and nonlinearities) cause classification
outputs to deviate from those expected of even a nominal weak
classifier. Second, while a column-based classifier is similar to
a linear classifier with weights restricted to 1-b (Section II-A),
standard linear-classifier training algorithms followed by such
extreme quantization would lead to inadequate performance.
Sections III-A and III-B describe the training algorithm,
starting with a boosting algorithm to overcome circuit non-
idealities, followed by a base-classifier training algorithm to
overcome the very low weight precision.

A. Error-Adaptive Classifier Boosting

Error-adaptive classifier boosting (EACB) [12] is
an approach that extends from Adaptive Boosting
(AdaBoost) [11]. In AdaBoost, base weak classifiers are
trained iteratively, at each stage biased to emphasize and
correct fitting errors from the previous iterations (which
arise due to a decision boundary not adequately separating
training data from different classes). EACB performs training
using the specific nonideal instances of implemented weak
classifiers to bias each stage of training. Thus, errors due to
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Fig. 4. Illustration of EACB. (a) Logical structure of a resulting strong clas-
sifier and (b) its implementation within the in-memory classifier architecture.

the nonideal implementation are adaptively corrected along
with fitting errors.

Once all base weak classifiers are thus trained, the strong
classifier is constructed via weighted voting over weak-
classifier decisions. Fig. 4(a) shows the logical structure, and
Fig. 4(b) shows its implementation, using multiple column-
based weak classifiers for boosting and weighted voting over
these outside the SRAM. It is expected that circuit nonideali-
ties will increase the number of column-based weak classifiers
required; this will be shown in the measurement results in
Section V-B. Note that all weak classifiers take the same
feature vector, readily inputted in the SRAM structure via the
shared WLs.

We point out that if errors due to die-to-die circuit variations
are large, we would like devices to self-construct their own
EACB models on a die-to-die basis. This raises two concerns,
which have been previously explored in EACB [12]: 1) access
to a training set (data and labels) and 2) computational
resources for training. During operation, training-set data are
readily available, including feature vectors and associated
weak-classifier outputs for biasing the training iterations.
While training-set labels (ground truths) are not available, in
an architecture such as Fig. 1, a high-performance (energy-
intensive) classifier can be implemented in the full-functioned
node, whose class declarations provide estimated labels. This
is shown to enable performance at a level whose limit is set
by the high-performance classifier and a nonideal classifier
trained with true labels [12]. Since training typically occurs
infrequently, computational resources (e.g., energy) can be
largely amortized. An exception is the embedded memory
needed to store the training set, which must typically be large
for low generalization error. This has been addressed in EACB
by exploiting the relative immunity of weak classifiers against
overfitting. This enables a smaller training set to be used for
each iteration, while a new training set can be selectively
acquired at each iteration to enhance diversity across the strong
ensemble. Thus, the instantaneous training set is reduced,
substantially mitigating the embedded memory required [12].

B. Base Classifier Training for Binary Weights

The problem with quantizing weights to 1-b after standard
linear-classifier training (e.g., linear regression) is that the

Fig. 5. Demonstration of discrete optimization in hand written digit
recognition of digit 0 versus 2.

resulting model is significantly perturbed, no longer optimally
fitting the training set. Instead, we integrate weight quantiza-
tion in the optimization cost function of the base-classifier
learning rule. The resulting model has weaker fitting than
with high-precision weights, but is optimal at the 1-b level.
Equation (2) specifies the optimization, where 1-b quantization
is represented by constraining the weight vector �w to +/−1,
and also introducing an additional postive scaling variable α to
be optimized (�xs /ys is the training-set feature-vectors/labels)

minimize
α, �w

∑
s

(ys − α · �w · �xs)
2

subject to α > 0, �w ∈ {−1, 1}N . (2)

Unlike conventional linear regression, this optimization is dis-
cretized and not convex, with complexity scaling exponentially
in the vector dimensionality N . However, as shown in (5), by
pulling α scaling into the constraints (such that �v = α · �w), as
well as introducing binary variables bi (to be optimized) and
a constant c [simply chosen to be larger than α + max(|vi |)],
reformulation to a mixed-integer program is possible (i.e.,
quadratic objective and linear constraints). For this, fast solvers
such as [13] are available

minimize
�v,α,�b

∑
s

(ys − �v · �xs)
2 (3)

subject to − α ≤ vi ≤ α, vi + c · bi ≥ α,

vi + c · (bi − 1) ≤ −α (4)

where bi ∈ {0, 1}, c > α + max(|vi |), i = 1, . . . , N.

(5)

Fig. 5 illustrates this approach in an MNIST [14] digit-
recognition application, for a 0-versus-2 classifier1 using
81 image-pixel features (downsampled from 784, and pro-
jected to two dimensions using PCA for visualization). The
decision boundary for a linear classifier with weights quantized
to 10-b retains high accuracy of 96%. Decision boundaries
from 1-b weights correspond to 45◦ lines in the 2-D feature
space, with simple quantization leading to a low accuracy

1This represents a relatively difficult classification due to similar shape of
the hand-written digits.
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Fig. 6. Comparison of base-classifier training accuracy using standard and
proposed approaches (error bars represent minimum/maximum performance
across 45 binary classifiers required for ten-way classification of MNIST
images [14]).

of 52%. On the other hand, 1-b quantization using the opti-
mization above substantially restores accuracy to 91% (we
point out that the separability in an 81-D feature space is better
than that actually seen in the 2-D projection).

Fig. 6 overviews the training approach, using training accu-
racy for various base classifiers in an MNIST [14] 0–9 digit-
recognition application (error bars show min/max accuracy
over 45 required binary classifiers for all pairs of digits).
First, it is the performance of a linear classifier trained via
linear regression, using 64-b floating-point weights. Next, it
is a classifier with weights quantized to 10-b (found to be
the limit before accuracy substantially degrades). Then, it is
a classifier with further weight quantization to 1-b, showing
poor accuracy. After this, it is the performance of a classifier
using 1-b weights from the optimization above, showing
significantly higher accuracy. All classifiers thus far represent
ideal implementation, simulated in MATLAB. The last bar
shows the measured accuracy of column-based classifiers from
the implemented prototype. We see degradation due to circuit
nonidealities, showing that EACB is critical for restoring
accuracy to the level of the ideal system.

IV. CIRCUIT DESIGN

This section presents the details of the circuit design and
its analysis.

A. Wordline DAC

Fig. 7 shows the WLDAC circuit. The 5-b digital feature
values X[4 : 0] are inputted to a current DAC, formed from
binary-weighted pMOS current sources. The resulting current
IDAC is converted into an output WL voltage by running it
through an upsized replica of a bit cell. The driver-transistor
replica MD,R receives a VD D gate bias when Classify Mode
is enabled (via C L ASS_E N), thus representing a pull-down
condition in a bit cell. The access-transistor replica MA,R is
self-biased to generate a WL voltage corresponding to the
DAC current. Consequently, IDAC is mirrored by the bit cell,
giving roughly linear IBC with the inputted digital feature
value (scaled by the upsizing ratio R), and tracking with
voltage, temperature, and process skews is achieved.

Fig. 7. WLDAC circuit, consisting of binary-weighted current sources and a
bit-cell replica, to generate analog voltage on WL corresponding to inputted
digital feature values.

Fig. 8. Simulation of WLDAC, showing (a) transient WL pulses with
variable settling time for different input codes and (b) bit-line discharge
transfer function versus WLDAC input code, showing standard deviation
(due to variations) and nonlinearity.

Fig. 8(a) shows a transient simulation (capacitances
extracted) of the WL voltage (at 100 MHz operation), for
different X[4 : 0] codes. The biasing of pMOS current
sources and the upsizing ratio R sets the WL amplitudes.
The maximum amplitude is designed taking the aggregate bit-
cell current and BL/BLB capacitance into account, to ensure
BL/BLB discharge does not excessively saturate. We note
that the design is roughly independent as the number of
bit cells in the column increases, since nominally the ratio
of aggregate bit-cell current to BL/BLB capacitance remains
constant. Thus, approaches for creating an SRAM compiler
may be considered. This also implies that the discharge-phase
duration (set by the start of the WL pulse and the instant
of sense-amplifier strobing) remains roughly constant (usually
set in SRAM compilers by designing a controlled timing
path [15], [16]).

With regard to error sources, we see from Fig. 8(a) that the
WL settling time is variable. This is due to self-biasing of
the bit-cell replica (i.e., DAC output impedance ∼ 1/gm A,R

depends IDAC). Thus, at low currents, driving the large WL
capacitance exhibits slewing behavior. This leads to a source of
nonlinearity, as shown in the BL-discharge transfer function of
Fig. 8(b). To mitigate this, an offset current source is included
in the DAC (i.e., pMOS devices on the far right in Fig. 7) to
reduce its output impedance, and the current source is enabled
irrespective of the digital input code. As seen, this notably
improves the transfer-function linearity.

Some remaining nonlinearity is observed, but is addressed
by EACB. Strictly speaking, nonlinearity poses a systematic
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Fig. 9. Bit-line discharge nonlinearity. (a) Source arising from possible pull-
up condition in bit cells. (b) Simulation showing variable compression of
nominally equivalent BL/BLB differential voltage due to different common-
mode levels.

source of error across all weak classifiers, not accounted for
in the learning rule. Thus, even if the model derived at each
iteration of training is appropriately adapted, a consistent non-
linearity in applying the model at every iteration will prevent
the errors from being corrected (and a change in the learning
rule to account for the nonlinearity will be required [17]).
However, if variations dominate the nonlinearity, the errors
will not be consistent across iterations, and will be corrected
over the iterations [12]. Error bars in Fig. 8(b), representing
the standard deviation (from Monte Carlo simulations), show
that this is the case.

Yet another source of error arises due to bit-line discharge.
The transfer function in Fig. 8(b) assumes that BL/BLB
remains near their precharge voltage. However, unlike the
SRAM mode where low-swing BL/BLB is preferred, in the
Classify Mode, large BL/BLB swings are allowed to accom-
modate the dynamic range needed for summation of all bit-
cell pull-down currents. This introduces two sources of error:
1) the currents from all cells pulling down are reduced due
to decreasing VDS across their access and driver transistors
and 2) cells not pulling down begin to pull up, albeit through
a weakly biased nMOS. As shown in Fig. 9(a), this occurs
because the access transistors experience reducing source
voltage and begin to turn on. Consequently, as shown in the
simulations of Fig. 9(b), a lower common-mode voltage causes
the BL/BLB differential voltage to be compressed. However,
we note that in absence of comparator offset, this does not
change the sign and thus the result of classification. Further-
more, because comparator offset is expected to be uncorrelated
between column-based weak classifiers, EACB can overcome
such errors. Additionally, Section IV-C describes a method by
which comparator offsets are compensated.

B. Bit Cells

The bit-cell array is identical to a standard 6T SRAM,
including sizing. We note that in the Classify Mode, the cells
face the potential for a new upset condition. However, this
exhibits much greater margin than the standard SRAM Mode.
Fig. 10(a) shows the read condition during the SRAM Mode.
An upset could occur because the stored data are exposed to
precharged BL/BLB, which can pull up the internal nodes.
To ensure the stored data are retained, the butterfly curves
shown in Fig. 10(b) must exhibit bistable lobes; the read static

Fig. 10. Possible cell upset in SRAM Mode (a) arising due to read condition
and (b) measured by read SNM.

Fig. 11. Possible cell upset in Classify Mode (a) arising due to large-swing
BL/BLB discharge condition and (b) measured by “Classify SNM.”

Fig. 12. Comparison between SRAM Mode (read) SNM and Classify Mode
SNM using 10k-point Monte Carlo simulation, showing that Classify Mode
has much larger margin and lower standard deviation.

noise margin (SNM) measures the size of the largest embedded
square in these lobes [18]. On the other hand, Fig. 11(a)
shows a condition, similar to SRAM write, which could occur
during the Classify Mode. Namely, BL/BLB can be pulled
low, potentially causing an internal node at Logic 1 to be
pulled low. However, because the WL is restricted to <0.4V
[Fig. 8(a)], the internal nodes are minimally affected, and
as seen in the butterfly curves of Fig. 11(b), large “Classify
SNM” is maintained. Fig. 12 shows distributions from Monte
Carlo simulations of the SRAM Mode read SNM and the
Classify Mode SNM, showing that with standard cell sizing,
the Classify SNM is much larger and has smaller standard
deviation.
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Fig. 13. Sense amplifier (a) circuit and (b) signal timing for charge
equalization.

Fig. 14. Comparator offset-compensation approach via binary search, in
parallel for all columns (eight offset compensation rows are shown, but tests
in Section V employ 32 rows).

C. Sense Amplifiers

Fig. 13(a) shows the sense-amplifier comparator used for
each column. Unlike in a standard SRAM, which employs
low-swing BL/BLB, the sense amplifier must accommodate
rail-to-rail inputs that can occur in the Classify Mode. Thus,
a topology is used based on back-to-back inverters for regen-
eration, where the coupled nodes are driven by BL/BLB. As
shown in Fig. 13(b), the timing is designed, such that the input
switches are turned on just before the precharge phase ends.
This way, precharging BL/BLB also equalizes charge on the
regenerative nodes before the discharge phase begins.

Comparator offset, like many other circuit nonidealities, can
be overcome via EACB. But, the SRAM structure readily
affords self-compensation to substantially reduce comparator
offset, thus reducing the EACB iterations required (as demon-
strated in Section V-B). This is shown in Fig. 14. C rows
are designated for offset compensation, with a WL bias VCAL
set to achieve a desired granularity of compensation (in the
figure, C = 8 but tests in Section V-A employ C = 32). Since
comparator offset can be dependent on the input common-
mode level, other rows are designated for discharging BL/BLB
to nominally equivalent values corresponding to the average
discharge level expected during operation. Initially, half of
the offset-compensation rows are set to store a Logic 1, and
half are set to store a Logic 0. Then, BL/BLB discharge is

Fig. 15. Prototype (a) die photo and (b) measurement-summary table.

performed and a comparison is made. For columns that return
a −1 decision, half of the Logic 0 cells are written with
Logic 1 data, and for columns return a +1 decision, half of
the Logic 1 cells are written with Logic 0 data. Progressing
in this way via binary search, the offset of all columns can
be compensated in parallel with log2C cycles. In reality,
equivalent discharge of BL/BLB to the expected common-
mode level will be subject to bit-cell variations. To mitigate
this, each binary-search decision can be made by averaging
the comparison output over various configurations of discharge
rows; in the tests of Section V-A, averaging over ten different
discharge-row configurations is employed. The overhead of
offset compensation is the number of rows required (adding
area and bit-line capacitance), which sets the ratio of the
offset-compensation range and granularity (i.e., small VCAL
gives finer granularity but reduces range, requiring more rows).
However, because all rows are physically identical, the number
of rows employed for offset compensation can be configured
to optimize for different applications.

V. PROTOTYPE MEASUREMENTS

A prototype is developed in 130-nm CMOS with a
128 × 128 6T bit-cell array supporting both SRAM and
Classify Mode operation. For testing, write data, read data, and
feature vectors are provided via buffers, implemented as scan
chains. The die photo and measurement results are summarized
in Fig. 15.

A. IC Characterization

SRAM Mode operates at 300 MHz while Classify Mode
operates at 50 MHz, with an energy per clock cycle of
14.7 and 46.6 pJ, respectively. The bit cells employ stan-
dard sizing of transistors, but are laid out with logic rules,
thus yielding a cell size somewhat larger than high-density
130-nm 6T cells. The periphery layout is optimized for
testability, but the added periphery circuits (most notably
WLDACs) occupy roughly the same area of the standard
SRAM periphery (address decoder and WL drivers).

Comparator offset before and after compensation is mea-
sured by sweeping the differential BL/BLB voltage (around the
expected common-mode level). This is done by sweeping the
WLDAC codes of rows configured to discharge BL/BLB. As
in the case of the common-mode level, the differential BL/BLB
voltage attained this way is subject to bit-cell variations. Thus,
averaging is performed over various configurations of rows.
Fig. 16 shows the measured offset across 128 columns from



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: IN-MEMORY COMPUTATION OF A MACHINE-LEARNING CLASSIFIER IN A STANDARD 6T SRAM ARRAY 7

Fig. 16. Result of offset compensation, showing the standard deviation of
comparator offset can be reduced.

Fig. 17. Implementation of demonstration system for classifying
0–9 handwritten numerical data from MNIST data set.

one chip, where 32 offset-compensation rows are employed
with a granularity VCAL set by a WLDAC code of 5’b01000.
The measured offset standard deviation is 54 LSB before
compensation and 13 LSB after compensation. As shown
next, this significantly reduces the number of EACB iterations
required.

B. System Demonstration

For application demonstration, image recognition of hand-
written numerical digits (0–9) from the MNIST data set [14]
is performed, with features corresponding to raw pixel val-
ues. However, MNIST images have 28 × 28 = 784 pixels.
Since the prototype implements only 128 rows, we low-pass
filter and downsample the images to 9 × 9 = 81 pixels.
MATLAB simulation of an ideal system based on boosted
linear classifiers shows that the detection accuracy reduces
from 96% to 90%. This now becomes the target for the system
measurements, where 81 of the rows are used for feature
inputs, 32 of the rows are used for offset compensation, and
15 rows are disabled (by setting the corresponding WLDAC
inputs Xoffset and X[4 : 0] to 0).

For ten-way digit classification, 45 binary classifiers are
implemented for all pairs of digits, and all-versus-all (AVA)
voting is performed over these. As shown in Fig. 17, the binary

Fig. 18. Accuracy comparison of demonstrated system for MNIST-image
classification. Increased EACB iterations required for restoring performance in
prototyped system show that demonstration is not a trivial example inherently
tolerant to circuit nonidealities.

classifiers (each including multiple iterations for EACB) are
implemented using SRAM columns, while the adders required
for boosting (7-b) and AVA voting (16-b) are outside the
array.

Fig. 18 shows the measured accuracy versus the number of
EACB iterations. The conventional, ideal system (implemented
in MATLAB), corresponding to boosted linear classifiers with
10-b weights (determined to be the limit before performance
degrades), achieves convergence in three iterations. The ideal
system with 1-b weights (implemented in MATLAB), cor-
responding to boosted linear classifiers trained using the
proposed approach in Section III-B, is somewhat weaker
and achieves convergence in five iterations. For both ideal
systems, EACB is only correcting weak-classifier fitting errors,
not circuit nonidealities. The prototyped system achieves the
performance of the ideal systems with 18 EACB iterations,
required to overcome circuit nonidealities. Thus, we see that
this application is not a trivial example in the sense of being
inherently tolerant to circuit nonidealities that impact the in-
memory architecture. Finally, we also show the performance,
over the first few iterations, of the prototyped system without
comparator-offset compensation; boosting is still achieved, but
more EACB iterations would be required for performance con-
vergence. We note that the 18 iterations required correspond
to more than 128 columns. Thus, the input feature data are
replayed in multiple runs to obtain data from all required weak
classifiers, 128 at a time (energy reported below is for all runs).
Testing to several iterations was performed on multiple chips,
all demonstrating very similar performance (e.g., testing to
18 iterations done for two chips showed accuracy >90%).

Fig. 19(a) shows the energy analysis. On the left, it is the
estimated energy of a conventional, discrete SRAM/digital-
MAC system, using boosted linear classifiers with 10-b
weights, requiring 71 nJ per ten-way classification. Next,
it is the estimated energy of a discrete SRAM/digital-adder
system, with +/−1 weights from the proposed approach; it
requires more iterations, but total energy is reduced to 7.9 nJ
thanks to fewer SRAM accesses and simpler computations
following. Next, it is the measured energy of the prototype; it
requires more iterations still, but total energy is further reduced
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Fig. 19. Comparison of demonstrated system with discrete
SRAM/digital-MAC systems showing (a) 113× and 13× energy reduction
and (b) 1525× and 175× EDP reduction.

Fig. 20. Energy and delay scaling in traditional and in-memory architectures.

to just 0.63 nJ thanks to no explicit SRAM accesses and
much fewer simple computations following (only additions
for boosting and AVA voting). This corresponds to 113× and
13× energy savings, respectively. In all cases, multiplier and
adder energies are estimated from postlayout simulations in the
130-nm technology (5-b × 10-b multiplication takes 4.7 pJ,
22-b addition takes 0.6 pJ, 16-b addition takes 0.4 pJ), and
SRAM energy is measured from the prototype (SRAM Mode).
Finally, Fig. 19(b) shows the energy-delay-product (EDP)
analysis for the three cases (normalized to the first case).
The frequency of the discrete SRAM/digital-MAC systems is
assumed to be 300 MHz (i.e., SRAM access speed), and a ten
times wider SRAM interface is assumed for the first system
(though more typically the SRAM would operate slower and
without such large interface). The prototype is estimated
to achieve 1525× and 175× EDP reduction, respectively,
enhanced by parallel operation over 81 bit-cells per column
every clock cycle.

VI. ANALYSIS OF IN-MEMORY ARCHITECTURE

This section examines how the in-memory architecture
alters the tradeoffs in traditional 2-D architectures, where sepa-
ration of data storage and computation raises a communication
cost, scaling with the amount (area) of data to be stored.
Fig. 20 shows the two architectures (we point out that various
other architectures, such as stacked 3-D, and computational
models, such as neuromorphic computing, will raise alternate
tradeoffs in terms of wire capacitance and bit-cell accessing
patterns, impacting the tradeoffs analyzed). We assume that the

amount of data required for a computation is D bits, arranged
in a D1/2 × D1/2 array, as is typically preferred. We identify
the following metrics of interest: bandwidth, latency, energy,
and SNR (though roughly fixed in traditional SRAMs, SNR
plays prominently in the in-memory architecture). These are
analyzed for the entire computation (i.e., over the entire data)
as D increases.2 Fig. 20 summarizes the analysis detailed as
follows.

1) Bandwidth: Traditional architectures are limited to pro-
viding data to computational hardware at each cycle
through a single memory port. While the port size can
increase as D1/2, to access the full data, D1/2 cycles
are required (i.e., number of rows), causing the total
bandwidth to decrease accordingly. On the other hand,
combining storage and computational hardware in the in-
memory architecture affords massive parallelism, where
all data are inherently available to the computational
hardware.

2) Latency: In traditional architectures, the BL/BLB capac-
itance increases as D1/2 (causing proportional increase
in discharge time), and the number of accesses increases
as D1/2, resulting in latency scaling as D. In the in-
memory architecture, the BL/BLB capacitance increases
similarly, but the number of bit cells pulling down in
parallel increases proportionally, resulting in roughly
constant absolute BL/BLB swing for given discharge
time (BL/BLB differential voltage impacts SNR, as
discussed in the following).

3) Energy: In traditional architectures, we assume the
energy of BL/BLB discharge dominates. The increasing
BL/BLB capacitance (as D1/2), the increasing number
of bit lines (as D1/2), and the increasing number of
accesses (as D1/2) cause the energy to scale as D3/2.
In the in-memory architecture, BL/BLB discharge also
dominates, and further involves large swing. However,
the number of accesses is constant, causing the energy
to scale only as D (which is much lower than D3/2 for
practical values of D). We point out that the in-memory
architecture also drives all WLs at once, making the WL
energy higher than in traditional architectures. However,
the WL voltages are low (<0.4V, as seen in Fig. 8a),
making this energy small, measured to be <20%.

4) SNR: Traditional SRAMs employ low-swing BL/BLB
signaling set by sensing requirements, regardless of D.
On the other hand, for the in-memory architecture, the
SNR for each weak-classifier decision varies, with the
worst case set by a condition where an equal number
bit cells pull down BL/BLB and only one additional
bit cell pulls down either BL or BLB, setting the
differential voltage. While the absolute discharge on
BL/BLB is roughly constant with D, the differential dis-
charge decreases with the BL/BLB capacitance as D1/2,
thereby reducing the effective signal for the classification
decision. Though error sources due to device noise

2We note that for each column-based weak classifier, the fundamental
amount of data is D1/2; this results in similar tradeoffs, but we focus on
the ensemble classifier as a more relevant computation.
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(e.g., thermal/shot noise) also reduce with capacitance
(roughly as D1/4), in practice, SNR is limited by other
error sources (e.g., nonlinearities, offsets, and varia-
tions).

We see that the in-memory architecture alters the above
tradeoffs, benefiting bandwidth, latency, and energy at the cost
of SNR. This is preferred given the algorithmic approaches
employed to address SNR (Section III). We note that taken to
an extreme, this can eventually degrade efficiency (e.g., requir-
ing many EACB iterations). But, an important and promising
direction that emerges with ensemble classifiers is the ability
to segment feature vectors, for instance by partitioning [19]
or low-dimensional embedding [20], [21] of feature subspaces.
This allows the data fundamentally associated with a particular
weak classifier to be reduced, so D can be segmented into
subarrays (avoiding excessive SNR degradation due to increas-
ing BL/BLB capacitance). Thus, algorithmic approaches can
enable optimization of an in-memory implementation across
all metrics for a broad range of data size and applications.

VII. CONCLUSION

This paper presents a strong machine-learning classifier
implemented in a standard 6T SRAM array. Throughput is
enhanced because operation is performed over all bit cells
in a column at once, and energy is enhanced because this
corresponds to only a single BL/BLB discharge (as compared
with standard read/write, where operation is performed over
only one bit cell in a column at once). The primary impact is
reduced SNR of the computation, limited by circuit nonide-
alities and weaker classifiers (i.e., lower precision weights).
Training algorithms are introduced (for boosting and base-
classifier training) to address this. A measured prototype
demonstrating MNIST image classification shows that the
algorithms are successful in restoring performance to the
level of an ideal, discrete SRAM/digital-MAC system while
lowering energy by 113× when a standard training algorithm
is employed and by 13× when the proposed training algorithm
is employed in the ideal, discrete systems.
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