Consistency
March 30th+31st, 2022
Consistency Models

- Strict Serializability
- Linearizability
- Sequential
- Causal+
- Eventual

- Stronger
- Weaker
Consistency Models

- Strict Serializability
- Linearizability
- Sequential
- Causal+
- Eventual

- Stronger
- Weaker
Strict Serializability

- **Transactions**: Operations can span multiple objects (e.g., keys in KV store)
- **Total order**: There exists some legal total ordering of transactions.
 - Legal: In the total ordering, a read operation sees the latest write operation.
- **Preserves real-time ordering**: Any transaction A that completes before transaction B begins, occurs before B in the total order.
- **Properties**:
 - Writes in a completed transaction appear to all future reads
 - Once a read sees transaction and completes, all future reads must see new transaction

Pros: Easily reason about correctness of transactions

Cons: High read and write latencies
Strict Serializability Example

<table>
<thead>
<tr>
<th>Strictly Serializable?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1:</td>
<td>{W(x)b, W(y)b}</td>
</tr>
<tr>
<td>P2: {W(x)a}</td>
<td></td>
</tr>
<tr>
<td>P3:</td>
<td>{R(x)a} {R(x)b}</td>
</tr>
<tr>
<td>P4:</td>
<td>{R(x)b} {R(y)b}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strictly Serializable?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1:</td>
<td>{W(x)b, W(y)b}</td>
</tr>
<tr>
<td>P2: {W(x)a}</td>
<td></td>
</tr>
<tr>
<td>P3:</td>
<td>{R(y)b} {R(x)a}</td>
</tr>
<tr>
<td>P4:</td>
<td>{R(x)b} {R(y)b}</td>
</tr>
</tbody>
</table>
Consistency Models

- Strict Serializability
- Linearizability
- Causal+
- Sequential
- Eventual

Strength:
- Stronger
- Weaker
Linearizability

- **Total order**: There exists some legal total order of operations
- **Preserves real-time ordering**: Any operation A that completes before operation B begins, occurs before B in the total order.
- **Difference from **strict serializability**?**
 - Single-object operations! No transactions!
- **Properties**
 - A completed write appears to all future reads
 - Once a read sees a new value, all future reads must return the new value (until new write)

Pros: Easy to reason about correctness

Cons: High read and write latencies
Linearizability Example

<table>
<thead>
<tr>
<th>Linearizable?</th>
<th>No</th>
<th>Linearizable?</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1:</td>
<td>W(x)a</td>
<td>P1:</td>
<td>W(x)a</td>
</tr>
<tr>
<td>P2:</td>
<td>W(x)b</td>
<td>P2:</td>
<td>W(x)b</td>
</tr>
<tr>
<td>P3:</td>
<td>R(x)b</td>
<td>P3:</td>
<td>R(x)a</td>
</tr>
<tr>
<td>P4:</td>
<td>R(x)b</td>
<td>P4:</td>
<td>R(x)a</td>
</tr>
</tbody>
</table>
Consistency Models

- **Strict Serializability**
- **Linearizability**
- **Sequential**
- **Causal+**
- **Eventual**

Stronger → **Sequential** → **Weaker**
Sequential Consistency

- **Total order**: There exists some legal total order of operations.
- **Preserves process ordering**: Total order respects order of each process’s operations.
- **Difference from linearizability?**
 - Order of ops across processes not determined by real-time

Pros: Can allow more orderings than linearizability \rightarrow better performance

Cons: Many possible sequential executions \rightarrow increased application complexity
Sequential Consistency Example

<table>
<thead>
<tr>
<th>P1:</th>
<th>W(x)a</th>
<th>P1:</th>
<th>W(x)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2:</td>
<td>W(x)b</td>
<td>P2:</td>
<td>W(x)b</td>
</tr>
<tr>
<td>P3:</td>
<td>R(x)b, R(x)a</td>
<td>P3:</td>
<td>R(x)b, R(x)a</td>
</tr>
<tr>
<td>P4:</td>
<td>R(x)b, R(x)a</td>
<td>P4:</td>
<td>R(x)a, R(x)b</td>
</tr>
</tbody>
</table>

Sequentially Consistent? Yes

Sequentially Consistent? No
Consistency Models

Strict Serializability Linearizability Causal+ Sequential Eventual

Stronger Weaker
Causal+ Consistency

- **Partial order**: Order causally related ops the same way across all processes
- **+**: Replicas eventually converge
- **Difference from **sequential consistency**?**
 - Only causally related ops need to be ordered: no total order
 - Concurrent ops may be ordered differently across different processes

Pros: Preserves causality while improving efficiency

Cons: Need to reason about concurrency
<table>
<thead>
<tr>
<th>Ops</th>
<th>Concurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,b</td>
<td>No</td>
</tr>
<tr>
<td>a,e</td>
<td>Yes</td>
</tr>
<tr>
<td>a,g</td>
<td>No</td>
</tr>
<tr>
<td>c,e</td>
<td>Yes</td>
</tr>
<tr>
<td>c,d</td>
<td>No</td>
</tr>
<tr>
<td>d,g</td>
<td>No</td>
</tr>
<tr>
<td>d,f</td>
<td>No</td>
</tr>
<tr>
<td>e,g</td>
<td>No</td>
</tr>
<tr>
<td>a,d</td>
<td>No</td>
</tr>
</tbody>
</table>
Causal+ Consistency Example

Causally+ Consistent? Yes

P1: W(x)a
P2: W(x)b
P3: R(x)b R(x)a
P4: R(x)a

Causally+ Consistent? No

P1: W(x)a
P2: R(x)a W(x)b
P3: R(x)b R(x)a
P4: R(x)a
Consistency Models

- Strict Serializability
- Linearizability
- Sequential
- Causal
- Eventual

Stronger to Weaker

- Stronger
- Linearizability
- Sequential
- Causal
- Eventual
- Weaker
Eventual Consistency

- **Eventual convergence**: If no more writes, all replicas *eventually* agree
- **Difference from *causal consistency*?**
 - Does not preserve causal relationships
 - Is the “+” in causal+
- **Frequently used with application conflict resolution, anti-entropy**

Pros: Highly available; think Dynamo

Cons: No safety guarantees, need conflict resolution
In a nutshell...

Strict Serializability: Total order + real time guarantees over *transactions*

Linearizability: Total order + real time guarantees over *operations*

Sequential consistency: Total order + process order

Causal+ consistency: Causally ordered + replicas eventually converge

Eventual consistency: Eventually everyone should agree on state
Exercise 1:

Consistency Model:

- Strictly Serializable: Yes
- Linearizable: Yes
- Sequential: Yes
- Causal+: Yes
- Eventual: Yes

P1: \{W(x) 1, W(y) 2\} \{R(y) 4\}

P2: \{W(x) 1, R(y) 4\}

P3: \{W(x) 0, W(y) 4\}

P4: \{R(x) 0\} \{R(x) 1\}
Exercise 2:

Consistency Model:

- Linearizable: Yes
- Sequential: Yes
- Causal+: Yes
- Eventual: Yes

P1: W(x) 1 R(y) 4

P2: R(x) 1 R(y) 4

P3: R(x) 1 W(y) 4

P4: R(x) 1 R(y) 4
<table>
<thead>
<tr>
<th>Exercise 3:</th>
<th>Consistency Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1: W(x) 3</td>
<td>Linearizable: No</td>
</tr>
<tr>
<td>W(y) 7</td>
<td>Sequential: Yes</td>
</tr>
<tr>
<td>P2: W(x) 1</td>
<td>Causal+: Yes</td>
</tr>
<tr>
<td>P3: R(x) 1</td>
<td>Eventual: Yes</td>
</tr>
<tr>
<td>R(x) 3</td>
<td></td>
</tr>
<tr>
<td>R(y) 7</td>
<td></td>
</tr>
<tr>
<td>P4: R(x) 1</td>
<td></td>
</tr>
<tr>
<td>R(x) 3</td>
<td></td>
</tr>
<tr>
<td>R(y) 7</td>
<td></td>
</tr>
<tr>
<td>P5: R(x) 1</td>
<td></td>
</tr>
<tr>
<td>R(x) 3</td>
<td></td>
</tr>
<tr>
<td>R(y) 7</td>
<td></td>
</tr>
</tbody>
</table>
Exercise 4:

<table>
<thead>
<tr>
<th></th>
<th>W(x)</th>
<th>W(y)</th>
<th>R(x)</th>
<th>R(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>P4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>P5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Consistency Model:
- Linearizable: No
- Sequential: No
- Causal+: Yes
- Eventual: Yes
Exercise 5:

Consistency Model:
- Linearizable: No
- Sequential: No
- Causal+: Yes
- Eventual: Yes

P1: \(W(x) 1 \)
P2: \(W(x) 3 \)
P3: \(W(x) 7 \)
P4: \(R(x) 3 \quad R(x) 7 \quad R(x) 1 \)
P5: \(R(x) 3 \quad R(x) 1 \quad R(x) 7 \)
Exercise 6:

Consistency Model:

- Linearizable: No
- Sequential: No
- Causal+: Yes
- Eventual: Yes

P1: \(W(x) \ 1 \)

P2: \(W(x) \ 3 \)

P3: \(R(x) \ 3 \quad W(x) \ 7 \)

P4: \(R(x) \ 3 \quad R(x) \ 7 \quad R(x) \ 1 \)

P5: \(R(x) \ 3 \quad R(x) \ 1 \quad R(x) \ 7 \)
Exercise 7:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>W(x) 1</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>R(x) 1</td>
<td>W(x) 3</td>
</tr>
<tr>
<td>P3</td>
<td>R(x) 3</td>
<td>W(x) 7</td>
</tr>
<tr>
<td>P4</td>
<td>R(x) 3</td>
<td>R(x) 7</td>
</tr>
<tr>
<td>P5</td>
<td>R(x) 3</td>
<td>R(x) 1</td>
</tr>
</tbody>
</table>

Consistency Model:

- **Linearizable**: No
- **Sequential**: No
- **Causal+**: No
- **Eventual**: Yes