
Distributed Snapshot
Feb 16th&17th, 2022

1

What is a Global Snapshot?
● A global snapshot captures the

global state of a distributed system:
○ Local state of each process within the

distributed system
○ Local state of each communication

channel
● These local states are

instantaneous
○ e.g messages in transit one node to

another

A B

C

m2m1

m3
m4

m5

2

Global Snapshots are Useful

● Checkpointing
○ Recover more quickly after failures

● Garbage Collection
○ Remove objects that are not referenced any more by other objects/processes at any other

servers

● Deadlock Detection
○ Examine the global application state and identify any deadlocks, useful in transactional DB

systems

● And many others …

3

System Model
● N processes in the system

○ Each process keeps track of some state

● There are two unidirectional communication channels between each pair of
processes P and Q

○ FIFO-ordered (i.e first-in-first-out)
○ Message arrives intact and is unduplicated
○ Each channel also has some state

● No failures

4

Messages and States
● What are the messages?

○ Application messages that differ across systems (e.g “sending $10 from A to B”, “read value at
memory address X and write back with a new value”)

○ Special messages (e.g marker message) that should not interfere with application messages

● What are the states?
○ Process state: application-defined state, or the classic notion of state which includes heap,

registers, program counters and etc
○ Channel state: the set of messages inside

● Tips for Assignment 2
○ See *.top, *.events, *.snap files under ./test_data to understand what states and

messages mean in this assignment
○ Read test_common.go to understand the syntax of the above files, and their relationships

with the simulator 5

Distributed Snapshot
“Distributed Snapshots: Determining Global States of Distributed Systems” 1985,
by K. Mani Chandy and Leslie Lamport

Key Idea: Servers send marker messages to each other

Marker messages

1. Mark the beginning of the snapshot process on the server

2. Act as a barrier (stopper) for recording messages

6

https://lamport.azurewebsites.net/pubs/chandy.pdf

Chandy-Lamport Algorithm
Any process can initiate the snapshot

- Record local state
- Create marker messages and send them to all outbound channels
- Start recording messages from all incoming channels

7

Chandy-Lamport Algorithm Continued
When receiving a marker message from channel C
If this is the first marker message that this process has even seen:

- Record the local state
- Record the state of C as “empty sequence”
- Send out the marker message on all outbound channels
- Start recording messages from all of its other incoming channels

If it has already seen a marker message (e.g from some other channel)
- Record the state of C as the sequence of messages received since the process’s local

state has been recorded
- Stop recording messages on C (i.e done with recording the channel’s state)

See Section 3 of the original paper for more details
8

https://lamport.azurewebsites.net/pubs/chandy.pdf

Chandy-Lamport Algorithm Continued
When is the algorithm terminated?

- All processes have received marker messages (i.e have recorded their local states)
- All processes have received marker messages from all of their incoming channels (i.e

have recorded the local states of all channels)
- Both need to satisfy

What happens after the termination?
- Optional and out of the scope of Chandy-Lamport algorithm
- Usually, there will be a central server that collects local snapshots from all servers to

build a global snapshot (e.g the simulator in Assignment 2) and maybe run some
computations (e.g deadlock detection) on it

9

Token passing example 1

A B

1 Token 0 Tokens

10

Token passing example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

1 Token

11

Token passing example 1

A B

0 Tokens 0 Tokens

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker1 TokenM

12

Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

M

13

Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

4. B receives marker,
starts snapshot

M

14

Token passing example 1

A B

0 Tokens 1 Token

Event order:

1. A sends 1 token

2. A starts snapshot,
sends marker

3. B receives 1 token

4. B receives marker,
starts snapshot

5. A receives marker,
ends snapshotWe did not record the token message because B

received it before B started the snapshot process

15

Token passing example 2

A B

0 Tokens 1 Token

16

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

1 Token

17

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

1 Token

M

18

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

1 Token

M

19

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

4. B receives marker,
starts snapshot1 Token

M

20

Token passing example 2

A B

0 Tokens 0 Tokens

Event order:

1. B sends 1 token

2. A starts snapshot,
sends marker

3. A receives 1 token,
records message

4. B receives marker,
starts snapshot

5. A receives marker,
ends snapshot

1 Token

We recorded the token message because A received
it after it has already started the snapshot process

21

Token passing example 3

A B

C

M m2m1

M
m4

m3

m6
m5

Which messages are
definitely recorded*?

Which messages are
definitely not recorded?

Which messages might
be recorded?

* recorded as in-flight messages, i.e.,
as part of channel state rather than
process state

m7

22

Which messages are
definitely recorded*?

Which messages are
definitely not recorded?

Which messages might
be recorded?

*recorded as in-flight messages

Token passing example 3

A B

C

M m2m1

M
m4

m3

m6
m5

m7

m7

m1, m3

m2, m4, m5, m6

23

Assignment 2 Overview
● You will implement the Chandy-Lamport snapshot algorithm

● Application is a token passing system

○ Number of tokens must be preserved in your snapshots

● Implementation uses discrete time simulator to order events

○ Simulator manages servers and injects events into the system

○ Server implements the snapshot algorithm (See slide 7 and 8)

● Allow multiple active snapshot processes

○ E.g, The second snapshot can start before the first snapshot completes in the system

24

Assignment 2 Interfaces
func (sim *Simulator) Tick()

func (sim *Simulator) StartSnapshot(serverId string)

func (sim *Simulator) NotifySnapshotComplete(serverId string, snapshotId int)

func (sim *Simulator) CollectSnapshot(snapshotId int) *SnapshotState

● What kind of state does the simulator need to keep track of?
○ Time
○ Topology
○ Channels to signal the completion of snapshots
○ ...

25

Assignment 2 Interfaces
func (server *Server) SendToNeighbors(message interface{})

func (server *Server) SendTokens(numTokens int, dest string)

func (server *Server) HandlePacket(src string, message interface{})

func (server *Server) StartSnapshot(snapshotId int)

● What kind of state does the server need to keep track of?
○ Local state
○ Neighbors
○ Which channels received markers
○ Recorded messages
○ ...

26

A Note on Channels and Goroutines
● Using channels is easy, debugging them is hard…

Bullet-proof way: Keep track of how many things go in and go out

Always ask yourself: is this channel buffered?

● In general, don’t use locks or atomic operations with channels (awkward)
● Try not to nest goroutines (hard to reason about)

27

Assignment 2

Start Early ☺

Due 02/24 (Thursday) at 11:59pm!

28

