
2/12/22

1

Distributed Snapshots

COS 418: Distributed Systems
Lecture 7

Mike Freedman

1

• What is the state of a distributed system?

2

Distributed Snapshots

New York
acct1 balance = $1000
acct2 balance = $2000

San Francisco
acct1 balance = $1000
acct2 balance = $2000

2

• N processes in the system with no process failures
• Each process has some state it keeps track of

• There are two first-in, first-out, unidirectional channels
between every process pair P and Q
• Call them channel(P, Q) and channel(Q, P)
• The channel has state, too: the set of messages inside
• All messages sent on channels arrive intact, unduplicated, in order

3

System model

3

Aside: FIFO communication channel
• “All messages sent on channels arrive intact, unduplicated, in order”

• Q: Arrive?

• Q: Intact?
• Q: Unduplicated?

• Q: In order?

• TCP provides all of these when processes don’t fail

• At-least-once retransmission

• Network layer checksums
• At-most-once deduplication
• Sender include sequence numbers,

receiver only delivers in sequence order

4

2/12/22

2

Global snapshot is global state

• Each distributed application has a number of processes
running on a number of physical servers

• These processes communicate with each other via channels

• A global snapshot captures
1. The local states of each process (e.g., program variables), and
2. The state of each communication channel

5

5

Why do we need snapshots?

• Checkpointing: Restart if the application fails

• Collecting garbage: Remove objects that aren’t referenced

• Detecting deadlocks: The snapshot can examine the current
application state
• Process A grabs Lock 1, B grabs 2, A waits for 2, B waits for 1...

• Other debugging: A little easier to work with than printf…

6

6

• Let’s represent process state as a set of colored tokens

• Suppose there are two processes, P and Q:

8

System model: Graphical example

P Q

Process P: Process Q:

channel(P, Q)

channel(Q, P)

R

G
B

Y

O

P

Correct global snapshot = Exactly one of each token

8

• Suppose we take snapshots only from a process perspective

• Suppose snapshots happen independently at each process

• Let’s look at the implications...

9

When is inconsistency possible?

9

2/12/22

3

• P, Q put tokens into channels, then snapshot

10

Problem: Disappearing tokens

P Q
R

G
B

O

P

P = { G }

Y
Y

Q = { R, P }

B O

This snapshot misses Y, B, and O tokens

10

• P snapshots, then sends Y
• Q receives Y, then snapshots

11

Problem: Duplicated tokens

P Q
R

G
B

Y

O

P

P = { G, Y }

Y Y

Q = { Y, R, P, B, O }

This snapshot duplicates the Y token

11

• What went wrong? We should have captured the state of the
channels as well

• Let’s send a marker message ▲ to track this state
• Distinct from other messages
• Channels deliver marker and other messages FIFO

12

Idea: “Marker” messages

12

• We’ll designate one node (say P) to start the snapshot
• Without any steps in between, P:

1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel

• Nodes remember whether they have snapshotted

• On receiving a marker, a non-snapshotted node performs
steps (1) and (2) above

13

Chandy-Lamport Algorithm: Overview

13

2/12/22

4

• P snapshots and sends marker, then sends Y
• Send Rule: Send marker on all outgoing channels
• Immediately after snapshot
• Before sending any further messages

14

Chandy-Lamport: Sending process

P Q
R

G
B

Y

O

P

snap: P = { G, Y }

▲Y

14

• At the same time, Q sends orange token O
• Then, Q receives marker ▲
• Receive Rule (if not yet snapshotted)
• On receiving marker on channel c record c’s state as empty

15

Chandy-Lamport: Receiving process (1/2)

P Q
R

G
B

O

P

P = { G, Y }

▲Y

O

▲

Q = { R, P, B }

channel(P,Q) = { }

15

• Q sends marker to P
• P receives orange token O, then marker ▲
• Receive Rule (if already snapshotted):

• On receiving marker on c record c’s state: all msgs from c since snapshot

16

Chandy-Lamport: Receiving process (2/2)

P Q
R

G
B

P

P = { G, Y }

Y

O

Q = { R, P, B }

▲

O ▲

channel(P,Q) = { }

channel(Q,P) = { O }

16

• Distributed algorithm: No one process decides when it
terminates

• Eventually, all processes have received a marker (and
recorded their own state)

• All processes have received a marker on all the N–1 incoming
channels (and recorded their states)

• Later, a central server can gather the local states to build a
global snapshot

Terminating a Snapshot

17

17

2/12/22

5

Take-away points

• Distributed Global Snapshots

• FIFO Channels: we can do that!

• Chandy-Lamport algorithm: use marker messages to coordinate

18

