
2/1/22

1

RPCs and Failure

COS 418: Distributed Systems
Lecture 4

Mike Freedman

1

2

Last Time: RPCs and Network Comm.
Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer

• Layers are our friends!
• RPCs are everywhere
• Necessary issues surrounding

machine heterogeneity

• Subtle issues around failures
• … this time!!!

2

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet
• Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow
3

What could possibly go wrong?

All of these may
look the same to
the client…

3

4

Failures, from client’s perspective

Client Server
request

Time ↓

✘

✘
reply

The cause of the failure is hidden from the client!

4

2/1/22

2

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the server stub

2. If no response arrives after a fixed timeout time period, then
client stub re-sends the request

• Repeat the above a few times
• Still no response? Return an error to the application

5

At-Least-Once scheme

5

• Client sends a “debit $10 from bank account” RPC

6

At-Least-Once and side effects

Client Server

Debit(acct, $10)

✘
(debit $10)

ACK!

ACK!

Debit(acct, $10)
(debit $10)

Tim
eo

ut

Time ↓

6

• Consider a client storing key-value pairs in a database
• put(x, value), then get(x): expect answer to be value

7

At-Least-Once and writes

Client
put(x, 10)

x=20

Server

put(x,10)
put(x,20)

put(x, 10)
Tim

eo
ut

ACK! xß10

put(x, 20)

ACK! xß20

Time ↓

7

• Consider a client storing key-value pairs in a database
• put(x, value), then get(x): expect answer to be value

8

At-Least-Once and writes

Client

Time ↓

put(x, 10)

x=20

Server

put(x,10)
put(x,20)

put(x, 10)
Tim

eo
ut

ACK! xß10

xß10

put(x, 20)

ACK! xß20

8

2/1/22

3

• Yes: If they are read-only operations with no side effects
• e.g., read a key’s value in a database

• Yes: If the application has its own functionality to cope with
duplication and reordering
• You will need this in Assignments 3 onwards

9

So is At-Least-Once ever okay?

9

• Idea: server RPC stub detects duplicate requests
• Returns previous reply instead of re-running handler

• How to detect a duplicate request?
• Test: Server stub sees same function, same arguments twice
• No! Sometimes applications legitimately submit the same

function with same augments, twice in a row

10

At-Most-Once scheme

10

• How to detect a duplicate request?
• Client stub includes unique transaction ID (xid) with each RPC request

• Client stub uses same xid for retransmitted requests

11

At-Most-Once scheme

At-Most-Once Server Stub
if seen[xid]:

retval = old[xid]
else:

retval = handler()
old[xid] = retval
seen[xid] = true

return retval

11

1. Combine a unique client ID (e.g., IP address) with the
current time of day

2. Combine unique client ID with a sequence number
• Suppose client crashes and restarts. Can it reuse the same client ID?

3. Big random number (probabilistic, not certain guarantee)

12

At-Most-Once: Providing unique XIDs

12

2/1/22

4

• Problem: seen and old arrays will grow without bound

• Observation: By construction, when the client gets a response to a
particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete it”
• Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests

13

At-Most-Once: Discarding server state

Significant overhead if many RPCs are in flight, in parallel

13

• Problem: seen and old arrays will grow without bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g., ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC
• Much like TCP sequence numbers, acks

• How does client know the server received the info about retired RPCs?
• Each one of these is cumulative: later seen messages subsume earlier ones

14

At-Most-Once: Discarding server state

14

• Problem: How to handle a duplicate request while the
original is still executing?

• Server doesn’t know reply yet. And we don’t want to run
procedure twice

• Idea: Add a pending flag per executing RPC
• Server waits for the procedure to finish, or ignores

15

At-Most-Once: Concurrent requests

15

• Problem: Server may crash and restart

• Does server need to write its tables to disk?

• Yes! On server crash and restart:
• If old[], seen[] tables are only in memory:

• Server will forget, accept duplicate requests

16

At-Most-Once: Server crash and restart

16

2/1/22

5

• Need retransmission of at least once scheme

• Plus the duplicate filtering of at most once scheme
• To survive client crashes, client needs to record pending RPCs on disk

• So it can replay them with the same unique identifier

• Plus story for making server reliable
• Even if server fails, it needs to continue with full state
• To survive server crashes, server should log to disk results of completed

RPCs (to suppress duplicates)
17

Exactly-once?

17

• Imagine that remote operation triggers an external physical thing
• e.g., dispense $100 from an ATM

• ATM could crash immediately before or after dispensing
• ATM would lose its state, and
• Don’t know which one happened (although can make window very small)

• Can’t achieve exactly-once in general, in presence of external actions

Exactly-once for external actions?

18

19

Summary: RPCs and Network Comm.
Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer

• Layers are our friends!
• RPCs are everywhere
• Help support machine heterogeneity

• Subtle issues around failures
• At-least-once w/ retransmission
• At-most-once w/ duplicate filtering

• Discard server state w/ cumulative acks
• Exactly-once with:

• at-least-once + at-most-once + fault tolerance + no external actions

19

