
1/30/22

1

Network Communication and
Remote Procedure Calls (RPCs)

COS 418: Distributed Systems
Lecture 3

Mike Freedman

1

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

2

2

Facebook
3

FacebookFacebook
4

1/30/22

2

• How can processes on different cooperating computers
communicate with each other over the network?

1. Network Communication

2. Remote Procedure Call (RPC)

Today’s outline

5

5

The problem of communication
• Process on Host A wants to talk to process on Host B

• A and B must agree on the meaning of the bits being sent
and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?

6

6

The problem of communication

• Re-implement every application for every new underlying transmission medium?
• Change every application on any change to an underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

7

7

Solution: Layering

• Intermediate layers provide set of abstractions for applications and media

• New apps or media need only implement for intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

8

8

1/30/22

3

• Transport: Provide end-to-end communication
between processes on different hosts

• Network: Deliver packets to destinations on other
(heterogeneous) networks

• Link: Enables end hosts to exchange atomic
messages with each other

• Physical: Moves bits between two hosts
connected by a physical link

Layering in the Internet

Applications

Transport layer
Network layer

Link layer
Physical layer

Host

9

9

Logical communication between layers

• How to forge agreement on meaning of bits exchanged b/w two hosts?

• Protocol: Rules that govern format, contents, and meaning of messages

• Each layer on a host interacts with its peer host’s corresponding layer
via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
10

10

Physical communication
• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
11

11

Communication between peers
• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer
• Higher layers’ headers, data encapsulated inside message
• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

12

12

1/30/22

4

• Socket: The interface the OS provides to the network
• Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
• e.g.: put(key,value) à message

Network socket-based communication

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket
Process

Socket

13

13

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {

perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

14

14

Socket programming: still not great

• Lots for the programmer to deal with every time
• How to separate different requests on the same connection?

• How to write bytes to the network / read bytes from the network?
• What if Host A’s process is written in Go and Host B’s process is in C++?

• What to do with those bytes?

• Still pretty painful… have to worry a lot about the network

15

15

Solution: Another layer!

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

Socket
RPC Layer RPC Layer

16

16

1/30/22

5

1. Network Communication

2. Remote Procedure Call

Today’s outline

17

17

• The typical programmer is trained to write single-threaded
code that runs in one place

• Goal: Easy-to-program network communication that makes
client-server communication seem transparent
• Retains the “feel” of writing centralized code

• Programmer needn’t think (much) about the network

Why RPC?

18

18

Everyone uses RPCs
• COS 418 programming assignments use RPC

• Google gRPC
• Facebook/Apache Thrift
• Twitter Finagle
• …

19

19

What’s the goal of RPC?
• Within a single program, running in a single process, recall

the well-known notion of a procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

RPC’s Goal: make communication appear like a local procedure call:
way less painful than sockets…

20

20

1/30/22

6

1. Heterogeneity
• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
• What if messages get dropped?
• What if client, server, or network fails?

3. Performance
• Procedure call takes ≈ 10 cycles ≈ 3 ns
• RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

RPC issues

21

21

• Not an issue for local procedure calls

• For a remote procedure call, a remote machine may:
• Run process written in a different language
• Represent data types using different sizes
• Use a different byte ordering (endianness)
• Represent floating point numbers differently
• Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary

Problem: Differences in data representation

22

22

• Mechanism to pass procedure parameters and return values in
a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
• Code to marshal (convert) native data types into machine-

independent byte streams (and vice-versa, called unmarshaling)
• Client stub: Forwards local procedure call as a request to server
• Server stub: Dispatches RPC to its implementation

Solution: Interface Description Language

23

23

1. Client calls stub function (pushes parameters onto stack)

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

24

24

1/30/22

7

1. Client calls stub function (pushes parameters onto stack)
2. Stub marshals parameters to a network message

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

25

25

2. Stub marshals parameters to a network message
3. OS sends a network message to the server

26

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS
proc: add | int: 3 | int: 5

26

3. OS sends a network message to the server
4. Server OS receives message, sends it up to stub

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5

27

27

4. Server OS receives message, sends it up to stub
5. Server stub unmarshals params, calls server function

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

28

28

1/30/22

8

5. Server stub unmarshals params, calls server function
6. Server function runs, returns a value

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

29

29

6. Server function runs, returns a value
7. Server stub marshals the return value, sends message

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

30

30

7. Server stub marshals the return value, sends message
8. Server OS sends the reply back across the network

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

31

31

8. Server OS sends the reply back across the network
9. Client OS receives the reply and passes up to stub

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

32

32

1/30/22

9

9. Client OS receives the reply and passes up to stub
10.Client stub unmarshals return value, returns to client

A day in the life of an RPC

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

33

33

1. Network Communication

2. Remote Procedure Call
• Heterogeneity – use IDL w/ compiler
• Failure

Today’s outline

34

34

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet
• Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

What could possibly go wrong?

All of these may
look the same to
the client…

35

35

Summary: RPCs and Network Comm.
Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer

• Layers are our friends!

• RPCs are everywhere

• Necessary issues surrounding
machine heterogeneity

• Subtle issues around failures

• … Next time!!!

36

36

