
4/13/22

1

Distributed Systems for 
Machine Learning

Neil Agarwal

April 13, 2022

1

Fundamentals of Distributed Systems

2

Fault Tolerance
Massive Parallelization

Synchronization/Consensus

Fundamentals of Distributed Systems

3

Fault Tolerance
Massive Parallelization

Synchronization/Consensus

Also apply to systems for 
machine learning!

Lecture Goals

• Define systems for machine learning
• Understand challenges and considerations in designing such systems
• Explore a widely deployed system for ML (TensorFlow)

4



4/13/22

2

Agenda

• What’s led to the success of machine learning?
• What’s a typical machine learning job?
• Systems for machine learning
• Definition
• Challenges:

• How to handle distributed computation?
• How to support execution in diverse environments/heterogeneous hardware?
• Developer interface: Tradeoff between flexibility and efficiency

• Case Study: TensorFlow 

5

The Success of Machine Learning Today

6

Object detection
Autonomous vehicles 

Language Modeling Game playing
Adapted from Zhihao Jia

7

The Ingredients in ML Success

ML 
Model

ResNet, Transformers, Graph Neural 
Networks, Mixture-of-Experts, …

DataImageNet, Kaggle, 
Flickr, NetFlix, … 

Hardware
GPUs, TPUs, 
Supercomputers, FPGAS

Slide credits: Zhihao Jia

Systems for 
ML

ML systems bridge model, data, and hardware
What is a typical machine 
learning job?

8



4/13/22

3

Note on Training vs Inference

9

In today’s discussion, will 
focus on training!

Will briefly discuss 
inference later!

1. Users select a model architecture!
- Typically Deep Neural Networks (DNNs)
- Others types/variants: Recurrent Neural Networks, Graph Neural Networks, etc.

10

DOG

Machine Learning Training Pipeline

2. Users provide a large labeled dataset
- images + classification labels
- images + captions
- sentence + sentimental analysis

11

Images + labels

DOG

DOG
CAT

CAT

Machine Learning Training Pipeline

3. Train the model!
- sequentially process the dataset
- learn using a form of gradient descent (via backpropagation)

12

Machine Learning Training Pipeline



4/13/22

4

Machine Learning Training Pipeline

13

Training

Model & 
Dataset

Trained 
Model

14

Graph 
Optimizations Data + 

Compute 
Layout

Hardware 
Interface

Fault 
Tolerance

Synchronization

Model & 
Dataset

Trained 
Model

15

Graph 
Optimizations Data + 

Compute 
Layout

Hardware 
Interface

Fault 
Tolerance

System for 
Machine 
Learning

Don’t worry 
about it.

Synchronization

Model & 
Dataset

Trained 
Model

Phew.

Abstracts away the underlying systems 
complexity of training machine learning models 

System for Machine Learning

• Abstracts away the underlying systems complexities of executing the 
training of machine learning models 
• Design Considerations
• Main

• How to handle distributed computation? 
• How to support execution in different environments and on heterogeneous hardware?
• What’s the right interface for users that still supports customizations?

• Others
• How to support different non deterministic control flows (eg recurrent neural networks?)

16



4/13/22

5

Design Consideration #1: How to handle 
distributed computation? 
• Why perform distributed machine learning in the first place?

• Trends
• Increasingly large datasets 

• millions/billions of images/samples
• Increasingly large DNNs

• more layers, more parameters

• For example,
• GPT-3 is a language model with about 175 billion parameters
• Is trained on 45 Terabytes of text data

17

Too slow to process on a single 
machine

The entirety of a DNN (and its 
weights/gradients) cannot fit on a 
single machine!

Distributed ML: Data 
Parallelism

18

ML Model

Training Dataset

1. Partition training data into batches

GPU 1

GPU 2

GPU N

…

2. Compute the gradients of 
each batch on a GPU 

Gradients 
Aggregation

3. Aggregate gradients 
across GPUs

Adapted from Zhihao Jia

Challenge: All the workers must communicate with the 
centralized server for weight updates.

Distributed ML: Model Parallelism
• Split a model into multiple subgraphs and assign them to different 

devices

20

Training Dataset

ML Model Model 
Parallelism

GPU 1

GPU 2

Transfer 
intermediate 
results 
between 
devices

Adapted from Zhihao Jia

Challenge: How split 
model across machines? Distributed ML Considerations

• Placement of computation across machines
• Communication of intermediate data between machines
• Fault tolerance! What happens if a machine crashes?
• Synchronization

21



4/13/22

6

Design Consideration #2: How to support 
execution in different environments and on 
heterogeneous hardware?

• Various types of compute settings:
• datacenter (thousands of CPUs, GPUs)
• workstation set up (single CPU, few GPUs)
• laptop

• Heterogeneous Hardware: GPUs, TPUs, FPGAs
• Each is optimized for different tasks
• Optimal memory placement/computation configuration depends on type

22

Define Once + 
Run Everywhere

Design Consideration #3: What’s the right 
interface/programming model for users that still 
supports customizations?

• Support different user requirements
• novice user: uses several default settings
• expert user:

• define new layers
• try new training algorithms
• introduce new optimizations

• Want easy-to-use interface while still being customizable

23

System for Machine Learning Recap

• Abstracts away the underlying systems complexities of executing the 
training of machine learning models 
• Design Considerations
• How to handle distributed computation? 
• How to support execution in different environments and on heterogeneous 

hardware?
• What’s the right interface for users that still supports customizations?

24

Case Study:

25



4/13/22

7

TensorFlow

• Developed by Google Brain 
• successor to DistBelief

• A system widely used in industry/academia for distributed machine 
learning!
• Main Contributions
• Support for large-scale distributed training
• Modular architecture that decouples optimizations of the machine learning 

model from the infrastructure itself
• supports diverse compute environments, heterogeneous hardware

• Very user-friendly: Python interface that enables customizability across the 
stack

26

TensorFlow System Design

27

Data Preprocessing Distributed DNN Training Model 
checkpointing

Adapted from Zhihao Jia

TensorFlow: Example

28

Phase 1: Define an 
ML model as a 
dataflow graph

Phase 2: Execute an 
optimized version of 
the graph

Adapted from Zhihao Jia

Systems for Machine Learning Inference

29

• Application/customer facing: stringent latency targets
• Deal with interactions with network
• Caching opportunities
• Model compression/pruning
• tradeoff between speed and accuracy

• Edge deployments



4/13/22

8

Active Research Areas in ML+Systems

30

• Application-specific optimizations for machine learning (e.g., video 
analytics)
• ML for systems (e.g., learned databases, compilation optimizations)
• New computation models (spot instances, serverless computing, 

programmable networks)

Takeaways

31

• Systems for machine learning are critical to the success of machine 
learning
• Handle the systems challenges involved in running large-scale 

distributed machine learning
• e.g., fault tolerance, consistency, heterogeneous hardware, communication

• Provide an easy-to-use interface for developers while still enabling 
significant levels of customizability


