

Lecture Goals

- Define systems for machine learning
- Understand challenges and considerations in designing such systems
- Explore a widely deployed system for ML (TensorFlow)

Distributed ML Considerations

- Placement of computation across machines
- Communication of intermediate data between machines
- Fault tolerance! What happens if a machine crashes?
- Synchronization

21

Design Consideration #2: How to support execution in different environments and on heterogeneous hardware?

- Various types of compute settings:
- Define Once + Run Everywhere

24

- datacenter (thousands of CPUs, GPUs) workstation set up (single CPU, few GPUs)
- laptop
- Heterogeneous Hardware: GPUs, TPUs, FPGAs
 - Each is optimized for different tasks
 - Optimal memory placement/computation configuration depends on type

Design Consideration **#3**: What's the right interface/programming model for users that still supports customizations?

- Support different user requirements
 - novice user: uses several default settings
 - expert user:
 - define new layers
 - try new training algorithms
 - introduce new optimizations
- Want easy-to-use interface while still being customizable

System for Machine Learning Recap

- Abstracts away the underlying systems complexities of executing the training of machine learning models
- Design Considerations
 - How to handle distributed computation?
 - How to support execution in different environments and on heterogeneous hardware?
 - What's the right interface for users that still supports customizations?

Tensorl	-low: Example	
Phase 1: Define an ML model as a dataflow graph	<pre># 1. Construct a graph representing the model. x = tf.placeholder(tf.float32, [BATCH_SIZE, 784]) y = tf.placeholder(tf.float32, [BATCH_SIZE, 10]) W_l = tf.Variable(tf.random_uniform([784, 100])) h_l = tf.Variable(tf.random_uniform([784, 100])) layer_l = tf.nn.relu(tf.matmul(x, W_l) + b_2) W_2 = tf.Variable(tf.random_uniform([100, 10])) h_2 = tf.Variable(tf.reros([100]) layer_2 = tf.matmul(layer_l, W_2) + b_2</pre>	<pre># Placeholder for input. # Placeholder for labels. # 784x100 weight matrix. # 100-element bias vector. # 0utput of hidden layer. # 100x10 weight matrix. # 10-element bias vector. # 0utput of linear layer.</pre>
	<pre># 2. Add nodes that represent the optimization algorithm. loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y) train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)</pre>	
Phase 2: Execute an optimized version of the graph	<pre># 3. Execute the graph on batches of input data. with tf.Session() as sess: sess.run(ff.initialize_all_variables()) for step in range(NUM_STEPS): x_data, y_data = sess.run(train_op, (x: x_data, y: y_data))</pre>	<pre># Connect to the TF runtime. # Randomly initialize weights. # Train iteratively for NUM_STEPS. # Load one batch of input data. # Perform one training step.</pre>
Adapted from Zhihao Jia		28

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Active Research Areas in ML+Systems

- Application-specific optimizations for machine learning (e.g., video analytics)
- ML for systems (e.g., learned databases, compilation optimizations)
- New computation models (spot instances, serverless computing, programmable networks)

Takeaways

30

- Systems for machine learning are critical to the success of machine learning
- Handle the systems challenges involved in running large-scale distributed machine learning
 - e.g., fault tolerance, consistency, heterogeneous hardware, communication
- Provide an easy-to-use interface for developers while still enabling significant levels of customizability