
1

Distributed Systems for
Content Delivery

Mike Freedman
Lecture 21

COS 418: Distributed Systems

1

Problem Space
• Many clients accessing web content

• Approach #1: Scale-out web architectures
– Use many independent instances of stateless web servers
– Scale-out storage backends via sharding

• Approach #2: Replicate and cache data closer to users
– Much web content is immutable and/or can be slightly stale

2

2

Modern Web Architectures

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

Greater fault tolerance

Greater scale

System capacity =
Σ individual capacities

Stateful
Storage Service

3

Modern Web Architectures

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Stateful
Storage Service

Stateless
Routing Layer

Soft-state
Caching

Layer

4

2

Modern Web Architectures

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Stateful
Storage Service

Stateless
Routing Layer

Soft-state
Caching

Layer

5

A-I

J-P

Q-Z

Modern Web Architectures

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Stateful
Storage Service

Stateless
Routing Layer

Soft-state
Caching

Layer

Caches can also
be sharded

6

Types of State
• Soft state – State (information/data) which is used for efficiency, but is

not essential for proper operation
– Soft state can often be regenerated or replaced if needed
– E.g., data caching is example of soft state used for performance improvement:

If lost, cached data can be refetched from slower, more durable storage

• Hard State – State which is necessary for correctness
– To date, most of our discussions in class have focused on hard state

Term introduced by David D. Clark (one of “designers” of Internet): “The design philosophy of
the DARPA internet protocols.” SIGCOMM, 1988. http://ccr.sigcomm.org/archive/1995/jan95/ccr-9501-clark.pdf

7

7

Sharded vs. Non-Sharded Caching

• Pros for sharding
– Greater cache capacity (Σ individual capacities)
– Adding servers increases both cache capacity and query throughput

(although non-sharded can also scale query throughput)

• Cons for sharding
– Clients need to maintain semi-accurate cache mappings, rather than

just random / round-robin selection
– Elasticity (adding/removing nodes) more complex, either requiring

active moving content or cache misses during passive rebalancing
8

8

3

How much to cache?
Many Internet workloads have Power law (Zipf) distribution

9

Characteristics of WWW Client-based Traces.
Cunha, Bestavros, Crovella, BU-CS, 1995

Experiences with CoralCDN: A Five-Year
Operational View. Freedman. NSDI 2010

9

How much to cache?
Many Internet workloads have Power law (Zipf) distribution

10

Significant benefits at beginning, but then reduced benefit for
cache hit rate as cache size grows

10

A-I

J-P

Q-Z

Modern Web Architectures

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Stateful
Storage Service

Stateless
Routing Layer

Soft-state
Caching

Layer

Caches can also
be sharded

11

Content Delivery Networks

A-I

J-P

Q-Z

A-F

G-L

M-R

S-Z

Stateless
Routing Layer

Soft-state
Caching

Layer

A-I

J-P

Q-Z

Downstream
Caching

A-I

J-P

Q-Z

12

4

Content Distribution Network
• Proactive content replication
– Content provider (e.g., CNN)

contracts with a CDN

• CDN replicates the content
– On many servers spread

throughout the Internet

• Updating the replicas
– Reactive by TTL or updates

pushed to replicas when the
content changes

13

origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

13

Caching is Complicated
• Significant fraction (>50%?) of distinct HTTP objects may be

uncacheable
– Dynamic data: Stock prices, scores, web cams
– CGI scripts: results based on passed parameters
– Cookies: results may be based on passed data
– Advertising / analytics: want to measure # hits (hint: use random strings)

• Yet significant fraction of HTTP bytes are cacheable
• Images, video, CSS pages, etc.

• Goal: Maximize cachability, while limiting staleness of cached objects

14

14

15

15

16

16

5

17

17

Caching is powerful:
Modern HTTP Video-on-Demand

• Download “content manifest” from origin server
• List of video segments belonging to video

– Each segment 1-2 seconds in length
– Client can know time offset associated with each
– Standard naming for video resolutions/formats: eg, 320dpi, 720dpi, 1040dpi

• Client downloads video segment (at certain resolution) using standard
HTTP request.
– HTTP request can be satisfied by cache: it’s a static object

• Client observes download time vs. segment duration, increases/decreases
resolution if appropriate 18

18

CDN Case Study:
How Akamai Works

19

Akamai Network
• Servers: ~365,000
• Networks: 1,350
• Countries: 135

https://www.akamai.com/company/facts-figures

19

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS root server

1 2

Nearby
Akamai
cluster

GET
index.
html

20

cache.cnn.com/foo.jpg

HTTP

Akamai
cluster

Akamai global
DNS server

Akamai regional
DNS server

End user

20

6

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Nearby
Akamai
cluster

21

DNS lookup
cache.cnn.com

Akamai
cluster

3

4 ALIAS:
g.akamai.net

Akamai global
DNS server

Akamai regional
DNS server

End user

21

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

22

Akamai
cluster

3

4 6

5

ALIAS
a73.g.akamai.net

DNS lookup
g.akamai.net

End user

22

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

23

Akamai
cluster

3

4 6

5

8

7

DNS a73.g.akamai.net

Address
1.2.3.4

End user

23

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

24

Akamai
cluster

3

4 6

5

8

7

9

GET /foo.jpg
Host: cache.cnn.com

End user

24

7

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

25

Akamai
cluster

3

4 6

5

8

7

9

GET /foo.jpg
Host: cache.cnn.com

12
11

GET foo.jpg

End user

25

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

26

Akamai
cluster

3

4 6

5

8

7

9

12
11

10End user

26

HTTP

How Akamai Works: Cache Hit
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

27

Akamai
cluster

4

3

5

6End user

27

Routing Client Requests within Map
• Mapping system collects data about each “group” of IP

addresses, based on network latency, loss, connectivity

• Map each IP group to a preferred server cluster
– Updated roughly every minute

• Short, 60-sec DNS TTLs in Akamai regional DNS accomplish this

• Map client request to a server in the cluster
– Load balancer selects a specific server
– E.g., to maximize the cache hit rate

28

28

8

Selecting server inside cluster

• Consistent hashing
– content_key = hash(URL) mod N
– node_key = hash(server ID) mod N

– Content belongs to server’s node_key is “closest” to URL’s content_key

29

CK80

N32

N90

N105 CK20

CK5

Circular
ID space

Content 5

Server 105

29

“Consistency”?
(and/or limiting the staleness of cached objects)

30

30

How long should the client cache for?

• Clients (and proxies) cache documents
– When should origin be checked for changes?
– Every time? Every session? Date?

• HTTP includes caching information in headers
– HTTP 0.9/1.0 used: “Expires: <date>”; “Pragma: no-cache”
– HTTP/1.1 has “Cache-Control”

– “No-Cache”, “Max-age: <seconds>”
– “ETag: <opaque value>

31

31

Why the changes between 1.0 and 1.1?

• Timestamps
– Server hints when an object “Expires” (Expires: xxx)

– Server provides last modified date, client can check if still valid

• Problems
– Client and server might not have synchronized clocks

– Server replicas might not have synchronized clocks

– Max-age solves this: relative seconds, not absolute time

32

32

9

What if cache expires?

GET / HTTP/1.1
Accept-Language: en-us
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com
Connection: Keep-Alive

• Store past expiry time (if room in cache)
• Upon request, first revalidate with server

HTTP/1.1 304 Not Modified

Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

33

33

Conditional GETs

GET / HTTP/1.1
Accept-Language: en-us
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com
Connection: Keep-Alive

• Revalidate cache content if still valid
• Redownload new version if modified

HTTP/1.1 304 Not Modified

Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

34

34

Another clock sync problem!

GET / HTTP/1.1
Accept-Language: en-us
If-None-Match: "686897696a7c876b7e”
Host: www.example.com
Connection: Keep-Alive

• What if server replicas don’t have aligned modification times?

HTTP/1.1 200

Date: Tue, 27 Mar 2001 03:50:51 GMT
ETag: 686897696a7c876b7e

35

35

Conclusion

• Content distribution is hard
– Many, diverse, changing objects
– Clients distributed all over the world

• Moving content towards client is key
– Reduces latency, improves throughput, reliability
– CDNs evolved into complex distributed systems

• Cache controls and revalidation are a key part of managing
content freshness with decentralized caching

36

36

