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Distributed Systems for 
Content Delivery

Mike Freedman
Lecture 21

COS 418: Distributed Systems
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Problem Space
• Many clients accessing web content

• Approach #1:  Scale-out web architectures
– Use many independent instances of stateless web servers
– Scale-out storage backends via sharding

• Approach #2:  Replicate and cache data closer to users
– Much web content is immutable and/or can be slightly stale
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Types of State
• Soft state – State (information/data) which is used for efficiency, but is 

not essential for proper operation
– Soft state can often be regenerated or replaced if needed
– E.g., data caching is example of soft state used for performance improvement:  

If lost, cached data can be refetched from slower, more durable storage

• Hard State – State which is necessary for correctness
– To date, most of our discussions in class have focused on hard state

Term introduced by David D. Clark (one of “designers” of Internet): “The design philosophy of 
the DARPA internet protocols.” SIGCOMM, 1988. http://ccr.sigcomm.org/archive/1995/jan95/ccr-9501-clark.pdf
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Sharded vs. Non-Sharded Caching

• Pros for sharding
– Greater cache capacity (Σ individual capacities)
– Adding servers increases both cache capacity and query throughput 

(although non-sharded can also scale query throughput)

• Cons for sharding
– Clients need to maintain semi-accurate cache mappings, rather than 

just random / round-robin selection
– Elasticity (adding/removing nodes) more complex, either requiring 

active moving content or cache misses during passive rebalancing 
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How much to cache?
Many Internet workloads have Power law (Zipf) distribution
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Characteristics of WWW Client-based Traces. 
Cunha, Bestavros, Crovella, BU-CS, 1995 

Experiences with CoralCDN: A Five-Year 
Operational View.  Freedman.  NSDI 2010

9

How much to cache?
Many Internet workloads have Power law (Zipf) distribution
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Significant benefits at beginning, but then reduced benefit for 
cache hit rate as cache size grows
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Content Delivery Networks
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Content Distribution Network
• Proactive content replication
– Content provider (e.g., CNN) 

contracts with a CDN

• CDN replicates the content 
– On many servers spread 

throughout the Internet

• Updating the replicas
– Reactive by TTL or updates 

pushed to replicas when the 
content changes
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Caching is Complicated
• Significant fraction (>50%?) of distinct HTTP objects may be 

uncacheable
– Dynamic data:  Stock prices, scores, web cams
– CGI scripts:  results based on passed parameters
– Cookies:  results may be based on passed data
– Advertising / analytics: want to measure # hits (hint: use random strings)

• Yet significant fraction of HTTP bytes are cacheable
• Images, video, CSS pages, etc.

• Goal:  Maximize cachability, while limiting staleness of cached objects
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Caching is powerful:
Modern HTTP Video-on-Demand

• Download “content manifest” from origin server
• List of video segments belonging to video

– Each segment 1-2 seconds in length
– Client can know time offset associated with each
– Standard naming for video resolutions/formats: eg, 320dpi, 720dpi, 1040dpi

• Client downloads video segment (at certain resolution) using standard 
HTTP request.  
– HTTP request can be satisfied by cache:  it’s a static object

• Client observes download time vs. segment duration, increases/decreases 
resolution if appropriate 18
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CDN Case Study:
How Akamai Works
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Akamai Network
• Servers: ~365,000
• Networks: 1,350
• Countries: 135

https://www.akamai.com/company/facts-figures
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HTTP

How Akamai Works: Cache Hit
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Routing Client Requests within Map
• Mapping system collects data about each “group” of IP 

addresses, based on network latency, loss, connectivity

• Map each IP group to a preferred server cluster
– Updated roughly every minute  

• Short, 60-sec DNS TTLs in Akamai regional DNS accomplish this

• Map client request to a server in the cluster
– Load balancer selects a specific server
– E.g., to maximize the cache hit rate
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Selecting server inside cluster

• Consistent hashing
– content_key = hash(URL) mod N
– node_key = hash(server ID) mod N

– Content belongs to server’s node_key is “closest” to URL’s content_key
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“Consistency”?
(and/or limiting the staleness of cached objects) 
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How long should the client cache for?

• Clients (and proxies) cache documents
– When should origin be checked for changes?
– Every time?  Every session?  Date?

• HTTP includes caching information in headers
– HTTP 0.9/1.0 used:  “Expires:  <date>”;  “Pragma: no-cache”
– HTTP/1.1 has “Cache-Control”

– “No-Cache”, “Max-age: <seconds>”
– “ETag:  <opaque value>
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Why the changes between 1.0 and 1.1?

• Timestamps
– Server hints when an object “Expires” (Expires: xxx)

– Server provides last modified date, client can check if still valid

• Problems
– Client and server might not have synchronized clocks

– Server replicas might not have synchronized clocks

– Max-age solves this:  relative seconds, not absolute time
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What if cache expires?

GET / HTTP/1.1
Accept-Language: en-us
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com
Connection: Keep-Alive

• Store past expiry time (if room in cache)
• Upon request, first revalidate with server 

HTTP/1.1 304 Not Modified

Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive
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Conditional GETs

GET / HTTP/1.1
Accept-Language: en-us
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com
Connection: Keep-Alive

• Revalidate cache content if still valid
• Redownload new version if modified

HTTP/1.1 304 Not Modified

Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive
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Another clock sync problem!

GET / HTTP/1.1
Accept-Language: en-us
If-None-Match: "686897696a7c876b7e”
Host: www.example.com
Connection: Keep-Alive

• What if server replicas don’t have aligned modification times?

HTTP/1.1 200

Date: Tue, 27 Mar 2001 03:50:51 GMT
ETag: 686897696a7c876b7e
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Conclusion

• Content distribution is hard
– Many, diverse, changing objects
– Clients distributed all over the world

• Moving content towards client is key
– Reduces latency, improves throughput, reliability
– CDNs evolved into complex distributed systems

• Cache controls and revalidation are a key part of managing 
content freshness with decentralized caching
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