2

4

1

Recap: Ideas Behind Read-Only Txns

- Tag writes with physical timestamps upon commit
 Write txns are strictly serializable, e.g., 2PL
- Read-only txns return the writes, whose commit timestamps precede the reads' current time
 - Rotxns are one-round, lock-free, and never abort

3

- Efficient read-only transactions in strictly serializable systems
 - Strict serializability is desirable but costly!
 - Reads are prevalent! (340x more than write txns)
 - Efficient rotxns \rightarrow good system overall performance

2

4

Recap: TrueTime

- Timestamping writes must enforce the invariant
 - If T2 starts after T1 commits (finishes), then T2 must have a larger timestamp
- TrueTime: partially-synchronized clock abstraction
 - Bounded clock skew (uncertainty)
 - TT.now() \rightarrow [earliest, latest]; earliest <= T_{abs} <= latest
 - Uncertainty (ε) is kept short
- TrueTime enforces the invariant by
 - Use at least TT.now().latest for timestamps
 - Commit wait

Takeaway

- Strictly serializable (externally consistent)
 Make it easy for developers to build apps!
- Reads dominant, make them efficient
 - One-round, lock-free
- TrueTime exposes clock uncertainty
 - Commit wait and at least TT.now.latest() for timestamps ensure real-time ordering
- Globally-distributed database
 - 2PL w/ 2PC over Paxos!