
3/23/22

1

Scalable Causal Consistency

COS 418: Distributed Systems
Lecture 16

Mike Freedman

1

Consistency Hierarchy (review)
Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

2

Causal+ Consistency (review)
1. Writes that are potentially causally related must be

seen by all processes in same order.

2. Concurrent writes may be seen in a different order on
different processes.

Concurrent: Ops not causally related

3

Causal+ Consistency (review)
• Partially orders all operations, does not totally order them
• Does not look like a single machine

•Guarantees
• For each process, ∃ an order of all writes + that process’s reads
• Order respects the happens-before (à) ordering of operations

• + replicas converge to the same state
• Skip details, makes it stronger than eventual consistency

4

3/23/22

2

Causal consistency within
replicated systems

5

5

Implications of laziness on consistency

6

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• Linearizability / sequential: Eager replication
• Trades off low-latency for consistency
• Maintain local ordering when replicating
• Operations may be lost if failure before replication

6

Consistency vs Scalability

System Consistency Scalable?

Paxos/RAFT Linearizable

Bayou Causal

Dynamo Eventual

Scalability: Adding more machines allows more data
to be stored and more operations to be handled!

It’s time to think about scalability!

No

No

Yes

7

7

Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

COPS Causal Yes

Paxos/RAFT Linearizable No

Next Time!

Scalability: Adding more machines allows more data
to be stored and more operations to be handled!

8

3/23/22

3

COPS:
Scalable Causal Consistency
for Geo-Replicated Storage

9

9

Geo-Replicated Storage
serves requests quickly

10

10

Inside the Datacenter
Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Web Tier Storage Tier
A-F

G-L

M-R

S-Z

Remote DC

Replication

11

11

A-Z A-ZA-L

M-Z

A-L

M-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

Scalability through Sharding

13

13

3/23/22

4

Causality By Example
Remove boss from
friends group

Post to friends:

“Time for a new job!”

Friend reads post

14

Causality ()
Same process
Reads-From
(message receipt)

TransitivityNew Job!

Friends
Boss

14

Bayou’s Causal Consistency

• Log-exchange based

• Log is single serialization point within DC
Implicitly captures & enforces causal order

Local Datacenter
Remote DC

13 24

13 24

√

15

15

Sharded Log Exchange

• What happens if we use a separate log per shard?

• What happens if we use a single log?

16

16

Scalability Key Idea
• Capture causality with explicit dependency metadata

• Enforce with distributed verifications
– Delay exposing replicated writes until all dependencies are

satisfied in the datacenter

Local Datacenter Remote DC
1

3

24

1
3

24

13 after

17

17

3/23/22

5

COPS Architecture

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Client

All Ops Local
=

Available and
Low Latency

18

18

COPS Architecture

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Client Library

19

19

Read

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Zread

Client Library

read

20

20

Write

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Client Library

write

Replication
write
after

write +
ordering
metadata

write
after =

write_after

21

3/23/22

6

A-F

G-L

M-R

S-Z
write_after(…,deps)

dep
check
(L337)

deps
L 337

A 195

dep_check(A195)

Exposing values after dep_checks
return ensures causal

Locator Key

Unique Timestamp

22

22

Basic Architecture Summary
• All ops local, replicate in background
– Availability and low latency

• Shard data across many nodes
– Scalability

• Control replication with dependencies
– Causal consistency

23

23

Challenge: Many Dependencies
Dependencies grow with client lifetime

Write

Write

Write

Current Write

Read
Read

Same
Process

Reads-
From

Transitive
Closure

24

24

Nearest Dependencies

25

• Transitively capture ordering constraints

25

3/23/22

7

Nearest Dependencies

• Need extra server-side state to calculate

26

• Transitively capture ordering constraints

26

One-Hop Dependencies
• Small superset of nearest dependencies
• Simple to track:
–Last write
–Subsequent reads

Thread-of-
Execution

Reads-
From

Transitive
Closure

27

27

• Checking them suffices for causality
– Competitive to eventually-consistent system

• Never store dependencies on the server

• Simplifies client-side dep tracking
– Clear on every write

Transitive
Closure

28

One-Hop Dependencies

28

Scalable Causal+

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

From fully distributed operation

write_after

write_after

read

read

read

29

29

3/23/22

8

Scalability
• Shard data for scalable storage

• New distributed protocol for scalably
applying writes across shards

• Also need a new distributed protocol for
consistently reading data across shards…

30

30

Reads Aren’t Enough

A-F

G-L

M-R

S-Z

Boss

I <3 Job

Web Srv

Asynchronous requests + distributed data = ??

Progress

Progress

Progress

Turing’s
Operations

New Job!

Boss
Boss

I <3 Job

Boss

Boss New Job!

New Job!

1

from 1
4

from 4

2

3 31

31

Read-Only Transactions
Consistent up-to-date view of data, across many servers

Logical Time

Alan…Friends 1 11

Alan…Status 2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends 1 11Alan Alan

More on transactions next time!
32

32

COPS Scaling Evaluation

 20

 40

 80

 160

 320

LOG
 1 2 4 8 16

COPS
 1 2 4 8 16

COPS-GT

Th
ro

ug
hp

ut
 (K

op
s)

 33

33

3/23/22

9

COPS
• Scalable causal consistency

– Shard for scalable storage
– Distributed protocols for coordinating writes and reads

• Evaluation confirms scalability

• All operations handled in local datacenter
– Availability + low latency

• Next time: scalable strong consistency
34

34

