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Scalable Causal Consistency
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Consistency Hierarchy (review)
Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo
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Causal+ Consistency (review)
1. Writes that are potentially causally related must be 

seen by all processes in same order. 

2. Concurrent writes may be seen in a different order on 
different processes.

Concurrent: Ops not causally related
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Causal+ Consistency (review)
• Partially orders all operations, does not totally order them
• Does not look like a single machine

•Guarantees
• For each process, ∃ an order of all writes + that process’s reads
• Order respects the happens-before (à) ordering of operations

• + replicas converge to the same state
• Skip details, makes it stronger than eventual consistency
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Causal consistency within 
replicated systems
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Implications of laziness on consistency
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• Linearizability / sequential:  Eager replication
• Trades off low-latency for consistency
• Maintain local ordering when replicating
• Operations may be lost if failure before replication
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Consistency vs Scalability

System Consistency Scalable?

Paxos/RAFT Linearizable

Bayou Causal

Dynamo Eventual

Scalability: Adding more machines allows more data 
to be stored and more operations to be handled!

It’s time to think about scalability!

No

No

Yes
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Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

COPS Causal Yes

Paxos/RAFT Linearizable No

Next Time!

Scalability: Adding more machines allows more data 
to be stored and more operations to be handled!
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COPS:
Scalable Causal Consistency
for Geo-Replicated Storage
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Geo-Replicated Storage
serves requests quickly
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Inside the Datacenter
Web Tier Storage Tier
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Replication
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Scalability through Sharding
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Causality By Example 
Remove boss from
friends group

Post to friends:

“Time for a new job!”

Friend reads post
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Causality (       )
Same process
Reads-From
(message receipt)

TransitivityNew Job!

Friends
Boss
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Bayou’s Causal Consistency

• Log-exchange based

• Log is single serialization point within DC
Implicitly captures & enforces causal order

Local Datacenter
Remote DC

13 24

13 24

√ 
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Sharded Log Exchange

• What happens if we use a separate log per shard?

• What happens if we use a single log?
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Scalability Key Idea
• Capture causality with explicit dependency metadata

• Enforce with distributed verifications
– Delay exposing replicated writes until all dependencies are 

satisfied in the datacenter

Local Datacenter Remote DC
1

3
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COPS Architecture
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Client

All Ops Local
=

Available and 
Low Latency
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COPS Architecture
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Client Library
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Read
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Write
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Client Library

write

Replication
write
after

write +
ordering
metadata

write
after =

write_after
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A-F

G-L

M-R

S-Z
write_after(…,deps)

dep
check
(L337)

deps
L 337

A 195

dep_check(A195)

Exposing values after dep_checks
return ensures causal

Locator Key

Unique Timestamp
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Basic Architecture Summary
• All ops local, replicate in background
– Availability and low latency

• Shard data across many nodes
– Scalability

• Control replication with dependencies
– Causal consistency
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Challenge: Many Dependencies
Dependencies grow with client lifetime

Write

Write

Write

Current Write

Read
Read

Same 
Process

Reads-
From

Transitive 
Closure
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Nearest Dependencies
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• Transitively capture ordering constraints
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Nearest Dependencies

• Need extra server-side state to calculate 
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• Transitively capture ordering constraints
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One-Hop Dependencies
• Small superset of nearest dependencies
• Simple to track:
–Last write
–Subsequent reads

Thread-of-
Execution

Reads-
From

Transitive 
Closure
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• Checking them suffices for causality
– Competitive to eventually-consistent system

• Never store dependencies on the server

• Simplifies client-side dep tracking
– Clear on every write

Transitive 
Closure
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One-Hop Dependencies
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Scalable Causal+
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From fully distributed operation

write_after

write_after

read

read

read
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Scalability
• Shard data for scalable storage

• New distributed protocol for scalably
applying writes across shards

• Also need a new distributed protocol for 
consistently reading data across shards…
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Reads Aren’t Enough

A-F

G-L

M-R

S-Z

Boss

I <3 Job

Web Srv

Asynchronous requests + distributed data = ??

Progress

Progress

Progress

Turing’s
Operations

New Job!

Boss
Boss

I <3 Job

Boss

Boss New Job!

New Job!

1

from 1
4

from 4
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Read-Only Transactions
Consistent up-to-date view of data, across many servers

Logical Time

Alan…Friends 1 11

Alan…Status 2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends 1 11Alan Alan

More on transactions next time!
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COPS Scaling Evaluation
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COPS
• Scalable causal consistency

– Shard for scalable storage
– Distributed protocols for coordinating writes and reads

• Evaluation confirms scalability

• All operations handled in local datacenter
– Availability + low latency

• Next time: scalable strong consistency
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